Infrared devices are increasingly used in industrial, medical, and environmental monitoring applications. Cost-effectiveness, robustness, and portability are characteristics that are highly sought after and they can be enabled by a dispersive spectrometer carrying a single-pixel detector. In this paper, we demonstrate a novel, high-throughput dispersive spectrometer that has its spectral resolution decoupled from its throughput. The proposed spectrometer implements a two-stage Hadamard transform encoding process that allows significantly more light into the system to enhance its signal-to-noise ratio. As a single-pixel detector is used to collect the spectral information, the proposed system can be easily implemented in other desired wavelengths. Furthermore, we develop a method to remove the need for uniform illumination at the entrance aperture by taking into consideration its spatial information during the reconstruction process, thereby increasing the ease of the design of devices required for in situ measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.492382DOI Listing

Publication Analysis

Top Keywords

dispersive spectrometer
8
single-pixel detector
8
high-throughput doubly-encoded
4
doubly-encoded single-pixel
4
spectrometer
4
single-pixel spectrometer
4
spectrometer extended
4
extended aperture
4
aperture infrared
4
infrared devices
4

Similar Publications

This study introduces a novel water-insoluble dispersant for coal water slurry (CWS), namely, a poly(sodium styrene sulfonate)- SiO nanoparticle (SiO--PSSNa). SiO--PSSNa was synthesized by combining the surface acylation reaction with surface-initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrometer (EDS), nuclear magnetic resonance spectroscopy (NMR) and thermogravimetric analysis (TGA) verified that SiO--PSSNa with the desired structure was successfully obtained.

View Article and Find Full Text PDF

The contamination of rivers by potentially toxic elements (PTEs) is a problem of global importance. The Valles River is Ciudad Valles' (Central Mexico) main source of drinking water. During the four seasons of the year, water samples (n = 6), sediment samples (n = 6), and plants (n = 10) were taken from three study sites selected based on the presence of anthropogenic activities in the Valles River.

View Article and Find Full Text PDF

Titanium potassium oxalate had been mixed into the electrolyte to improve the anti-corrosion property of the micro arc oxidation coating on the surface of the aluminium alloy. The surface and cross-section of the coating at different titanium potassium oxalate concentrations had been observed by scanning electron microscopy, showing that when the titanium potassium oxalate concentration was 10 g/L, the coating compactness was better. Additionally, the element content of the coating had been studied by the energy dispersive spectrometer, and results proved that the coating consisted of Al, O, Ti, Si, and P.

View Article and Find Full Text PDF

Bisphenols may negatively impact human health. In this study, we propose the use of HPLC-FLD for the simultaneous determination of bisphenols in pericardial fluid samples collected from patients with coronary artery disease undergoing coronary artery bypass surgery. For sample preparation, a fast, simple, and "green" DLLME method was used, achieving mean recovery values in the range of 62%-98% with relative standard deviations between 2% and 6% for all analytes.

View Article and Find Full Text PDF

The structural adhesive bonding of aluminum is widely used in the aircraft and automotive industries. The surface preparation of aluminum prior to adhesive bonding plays a significant role in improving the bonding strength. Surface cleanliness, surface roughness, and surface chemistry can be controlled, primarily, by proper surface treatment methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!