Fast (nanoseconds) optical wavelength switching is emerging as a viable solution to scaling the size and capacity of intra-data center interconnection. A key enabling technology for such systems is low-jitter optical clock synchronization, which enables sub-nanosecond clock and data recovery for optically switched frames using low-cost methods such as clock phase caching. We propose and demonstrate real-time low-latency wavelength-switched clock-synchronized intra-data center interconnection at 51.2 GBd using a fast tunable laser (with ns scale switching time) and ultra-stable-latency hollow core fiber (HCF) for optically-switched data center networks. For wavelength-switched systems, we achieve a physical layer latency below 46 ns, consisting of 28 ns transceiver latency and a 18 ns inter-packet gap. Finally, we show that by exploiting the low chromatic dispersion and thermally-stable latency features of HCF, active clock phase tracking can be entirely eliminated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.487320 | DOI Listing |
The increasing traffic of intra-data center networks creates an urgent demand for low-cost and high-speed intensity modulation/direct detection (IM/DD) transmission. In this Letter, we propose a joint scheme combining nonlinear lookup table (NL-LUT) pre-distortion, digital pre-emphasis (DPE), and a digital resolution enhancer (DRE) to achieve high-speed and low-cost IM/DD optical links using a low-resolution digital-to-analog converter (DAC). The NL-LUT and DPE are responsible for the system nonlinear impairments and channel attenuation at high frequency, respectively, while DRE handles the quantization noise (QN) caused by high peak-to-average ratios (PAPRs) and low-resolution DAC.
View Article and Find Full Text PDFFast (nanoseconds) optical wavelength switching is emerging as a viable solution to scaling the size and capacity of intra-data center interconnection. A key enabling technology for such systems is low-jitter optical clock synchronization, which enables sub-nanosecond clock and data recovery for optically switched frames using low-cost methods such as clock phase caching. We propose and demonstrate real-time low-latency wavelength-switched clock-synchronized intra-data center interconnection at 51.
View Article and Find Full Text PDFCoherent optical links are becoming increasingly attractive for intra-data center applications as data rates scale. Realizing the era of high-volume short-reach coherent links will require substantial improvements in transceiver cost and power efficiency, necessitating a reassessment of conventional architectures best-suited for longer-reach links and a review of assumptions for shorter-reach implementations. In this work, we analyze the impact of integrated semiconductor optical amplifiers (SOAs) on link performance and power consumption, and describe the optimal design spaces for low-cost and energy-efficient coherent links.
View Article and Find Full Text PDFAn optical amplification-free deep reservoir computing (RC)-assisted high-baudrate intensity modulation direct detection (IM/DD) system is experimentally demonstrated using a 100G externally modulated laser operated in C-band. We transmit 112 Gbaud 4-level pulse amplitude modulation (PAM4) and 100 Gbaud 6-level PAM (PAM6) signals over a 200-m single-mode fiber (SMF) link without any optical amplification. The decision feedback equalizer (DFE), shallow RC, and deep RC are adopted in the IM/DD system to mitigate impairment and improve transmission performance.
View Article and Find Full Text PDFThe self-homodyne coherent detection (SHCD) system is becoming more popular in intra-data center applications nowadays. However, for a high-speed SHCD system, the device imperfection such as transmitter (Tx) and receiver (Rx) side in-phase (I)/quadrature-phase (Q) time skew and bandwidth limitation will greatly restrict the transmission performance. The current mainstream calibration methods for traditional optical transceivers rely on the effect of frequency offset and phase noise to separate the Tx and Rx imperfection, which is not compatible with the SHCD system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!