A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Full analysis on coupling strengths between split ring resonators for double negative microwave tight-binding models. | LitMetric

AI Article Synopsis

  • Previous research indicates that split-ring resonators (SRRs) can effectively fine-tune coupling strengths in one-dimensional hopping models.
  • Our study systematically investigates the interactions between SRRs and complementary split-ring resonators (CSRRs) by estimating coupling strength using a model based on two orientation angles.
  • We provide insights into the band structure of SRR chains using a microwave-hopping model, which helps explore unique photonic band structures through tight-binding theory.

Article Abstract

Previous studies have shown that split-ring resonators (SRRs) can be utilized to achieve finely tuned nearest-neighbor coupling strengths in various one-dimensional hopping models. In our study, we present a systematic investigation of resonator coupling, providing a comprehensive quantitative description of the interaction between SRRs and complementary split-ring resonators (CSRRs) for any orientation combination. Our method includes an estimation of the coupling strength through a linear combination of periodic functions based on two orientation angles, with a sinusoidal expansion of up to the 3rd order, allowing for efficient and streamlined microwave structure design. Through our approach, we offer a satisfactory explanation of the band structure of SRR chains using a microwave-hopping model, which facilitates the exploration of exotic photonic band structures based on tight-binding theory.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.493283DOI Listing

Publication Analysis

Top Keywords

coupling strengths
8
split-ring resonators
8
full analysis
4
coupling
4
analysis coupling
4
strengths split
4
split ring
4
ring resonators
4
resonators double
4
double negative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!