Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous studies have shown that split-ring resonators (SRRs) can be utilized to achieve finely tuned nearest-neighbor coupling strengths in various one-dimensional hopping models. In our study, we present a systematic investigation of resonator coupling, providing a comprehensive quantitative description of the interaction between SRRs and complementary split-ring resonators (CSRRs) for any orientation combination. Our method includes an estimation of the coupling strength through a linear combination of periodic functions based on two orientation angles, with a sinusoidal expansion of up to the 3rd order, allowing for efficient and streamlined microwave structure design. Through our approach, we offer a satisfactory explanation of the band structure of SRR chains using a microwave-hopping model, which facilitates the exploration of exotic photonic band structures based on tight-binding theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.493283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!