Phase change materials (PCMs) are considered useful tools for efficient thermal management and thermal energy utilization in various application fields. In this study, a colloidal PCM-in-liquid metal (LM) system is demonstrated as a novel platform composite with excellent latent heat storage capability, high thermal and electrical conductivities, and unique viscoelastic properties. In the proposed formulation, eutectic Ga-In is utilized as a high-thermal-conductivity and high-fluidity liquid matrix in which paraffinic PCM microparticles with various solid-liquid phase transition temperatures are suspended as fillers. Good compatibility between the fillers and matrix is achieved by the nanosized inorganic oxides (titania) adsorbed at the filler-matrix interface; thus, the composite is produced via simple vortex mixing without tedious pre- or post-processing. The composite shows unique trade-off effects among various properties, i.e., elastic modulus, yield stress, density, thermal conductivity, and melting or crystallization enthalpy, which can be easily controlled by varying the contents of the suspended fillers. A Joule heating device incorporating the composite exhibits improved electrothermal performance owing to the synergy between the high electrical conductivity and latent heat storage capability of the composite. The proposed platform may be exploited for the rational design and facile manufacture of high-performance form-factor-free latent heat storage systems for various potential applications such as battery thermal management and flexible heaters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c05887 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, NO. 1 DAXUE ROAD, Xuzhou, Jiangsu, 221116, China.
With the increasing demand for thermal management, phase change materials (PCMs) have garnered widespread attention due to their unique advantages in energy storage and temperature regulation. However, traditional PCMs present challenges in modification, with commonly used physical methods facing stability and compatibility issues. This study introduces a simple and effective chemical method by synthesizing seven ester-based PCMs through chemical reactions involving lauric acid (LA) and seven different alcohols.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.
The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.
View Article and Find Full Text PDFMolecules
January 2025
Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, INDIA, Kolkata, 700032, INDIA.
The breaking of inversion symmetry combined with spin-orbit coupling, can give rise to intrigu- ing quantum phases and collective excitations. Here, we report systematic temperature dependent Raman scattering and theoretical calculations of phonon modes across the inversion symmetry- breaking structural transitions in a quasi-one-dimensional compound (TaSe4)3I. Our investigation revealed the emergence of three additional Raman-active modes in Raman spectra of the low- temperature (LT) non-centrosymmetric (NC) structure of the material.
View Article and Find Full Text PDFMonatsh Chem
December 2023
Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria.
Unlabelled: In recent years, sugar alcohols have gained significant attention as organic phase change materials (PCMs) for thermal energy storage due to their comparably high thermal storage densities up to 350 J/g. In a computational study, outstandingly high values of up to ~ 450-500 J/g have been postulated for specific higher-carbon sugar alcohols. These optimized structures feature an even number of carbon atoms in the backbone and a stereochemical configuration in which all hydroxyl groups are in an 1,3--relationship, as found in the natural hexitol d-mannitol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!