This study aims to investigate the neuroprotective effect of tetramethylpyrazine on mice after spinal cord injury and its mechanism. Seventy-five female C57BL/6 mice were randomly divided into 5 groups, namely, a sham operation group, a model group, a tetramethylpyrazine low-dose group(25 mg·kg~(-1)), a tetramethylpyrazine medium-dose group(50 mg·kg~(-1)), and a tetramethylpyrazine high-dose group(100 mg·kg~(-1)), with 15 mice in each group. Modified Rivlin method was used to establish the mouse model of acute spinal cord injury. After 14 d of tetramethylpyrazine intervention, the motor function of hind limbs of mice was evaluated by basso mouse scale(BMS) and inclined plate test. The levels of inflammatory cytokines tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β) in the spinal cord homogenate were determined by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the histology of the spinal cord, and Nissl's staining was used to observe the changes in the number of neurons. Western blot and immunofluorescence method were used to detect the expression of glial fibrillary acidic protein(GFAP) and C3 protein. Tetramethylpyrazine significantly improved the motor function of the hind limbs of mice after spinal cord injury, and the BMS score and inclined plate test score of the tetramethylpyrazine high-dose group were significantly higher than those of the model group(P<0.01). The levels of TNF-α, IL-6, and IL-1β in spinal cord homogenate of the tetramethylpyrazine high-dose group were significantly decreased(P<0.01). After tetramethylpyrazine treatment, the spinal cord morphology recovered, the number of Nissl bodies increased obviously with regular shape, and the loss of neurons decreased. As compared with the model group, the expression of GFAP and C3 protein was significantly decreased(P<0.05,P<0.01) in tetramethylpyrazine high-dose group. In conclusion, tetramethylpyrazine can promote the improvement of motor function and play a neuroprotective role in mice after spinal cord injury, and its mechanism may be related to inhibiting inflammatory response and improving the hyperplasia of glial scar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20230215.401 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).
View Article and Find Full Text PDFBMC Neurol
January 2025
Faculty of Medicine, Department of Neurology, Al-Quds University, Jerusalem, Palestine.
Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.
View Article and Find Full Text PDFJ Pediatr Urol
January 2025
Department of Women and Children's Health, School of Life Course Sciences, Kings College London, London, UK; Children's Bladder Service, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
Introduction: The Mirabegron-anticholinergic (MAC) combination has proven effective as a step-up strategy in managing paediatric neurogenic bladder following anticholinergic medication and botulinum toxin (BTX) therapy. This study assesses the long-term efficacy of MAC in children with neurogenic bladder.
Patients And Methods: A retrospective chart review was conducted from 2015 to 2023, including consecutive paediatric patients receiving Mirabegron (25/50 mg) with an anticholinergic agent (solifenacin 16, tolterodine 7, oxybutynin 7, trospium 1).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!