A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The BinDiscover database: a biology-focused meta-analysis tool for 156,000 GC-TOF MS metabolome samples. | LitMetric

The BinDiscover database: a biology-focused meta-analysis tool for 156,000 GC-TOF MS metabolome samples.

J Cheminform

West Coast Metabolomics Center for Compound Identification, UC Davis Genome Center, University of California, Davis, CA, 95616, USA.

Published: July 2023

Metabolomics by gas chromatography/mass spectrometry (GC/MS) provides a standardized and reliable platform for understanding small molecule biology. Since 2005, the West Coast Metabolomics Center at the University of California at Davis has collated GC/MS metabolomics data from over 156,000 samples and 2000 studies into the standardized BinBase database. We believe that the observations from these samples will provide meaningful insight to biologists and that our data treatment and webtool will provide insight to others who seek to standardize disparate metabolomics studies. We here developed an easy-to-use query interface, BinDiscover, to enable intuitive, rapid hypothesis generation for biologists based on these metabolomic samples. BinDiscover creates observation summaries and graphics across a broad range of species, organs, diseases, and compounds. Throughout the components of BinDiscover, we emphasize the use of ontologies to aggregate large groups of samples based on the proximity of their metadata within these ontologies. This adjacency allows for the simultaneous exploration of entire categories such as "rodents", "digestive tract", or "amino acids". The ontologies are particularly relevant for BinDiscover's ontologically grouped differential analysis, which, like other components of BinDiscover, creates clear graphs and summary statistics across compounds and biological metadata. We exemplify BinDiscover's extensive applicability in three showcases across biological domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359220PMC
http://dx.doi.org/10.1186/s13321-023-00734-8DOI Listing

Publication Analysis

Top Keywords

will provide
8
bindiscover creates
8
components bindiscover
8
bindiscover
5
samples
5
bindiscover database
4
database biology-focused
4
biology-focused meta-analysis
4
meta-analysis tool
4
tool 156000
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!