Background: The aim of this study was to investigate the antitumour activity, safety, and tolerability of pamiparib plus tislelizumab in patients with previously treated advanced solid tumours.
Methods: In this study, patients were enrolled into eight arms by tumour type. All received pamiparib 40 mg orally twice daily plus tislelizumab 200 mg intravenously every 3 weeks. The primary endpoint was objective response rate (ORR), assessed by the investigator per Response Evaluation Criteria in Solid Tumours v1.1. Secondary endpoints included duration of response (DoR), safety, and tolerability.
Results: Overall, 180 patients were enrolled. In the overall population, the ORR was 20.0% (range: 0-47.4 across study arms), with median DoR of 17.1 months (95% confidence interval [CI]: 6.2, not estimable [NE]). The highest ORR was observed in the triple-negative breast cancer (TNBC) arm (patients with BRCA1/2 mutations and/or homologous recombination deficiency) (ORR: 47.4%; median DoR: 17.1 months [95% CI: 3.0, NE]). Treatment-emergent adverse events (TEAEs) of ≥Grade 3 occurred in 61.7% of patients. Serious TEAEs occurred in 50.0% of patients.
Conclusions: Pamiparib plus tislelizumab showed a variable level of antitumour activity in patients with advanced solid tumours, with the highest ORR in TNBC and was associated with a manageable safety profile.
Clinical Trial Registration: ClinicalTrial.gov: NCT02660034.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449784 | PMC |
http://dx.doi.org/10.1038/s41416-023-02349-0 | DOI Listing |
Sci Rep
December 2024
Faculté des Sciences et Technologies, LEMTA - Université de Lorraine - CNRS UMR 7563, Boîte Postale 70239, Vandoeuvre les Nancy cedex, 54506, France.
The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.
View Article and Find Full Text PDFSci Rep
December 2024
Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.
View Article and Find Full Text PDFJpn J Radiol
December 2024
Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
Objective: The purpose of this study was to evaluate MRI findings of ovarian endometrioid carcinoma (OEC) as a predictor of histological grade.
Materials And Methods: This study included 60 patients with histopathologically confirmed OEC (20, 30, and 10 with grades 1, 2, and 3, respectively). Clinical and MRI results were retrospectively reviewed.
Sci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!