Understanding the genetic relationships between the key founder inbred lines and derived inbred lines could provide insight into the breeding history and the structure of genetic diversity of the available elite inbred lines with desirable target traits. The maize improvement program at the International Institute of Tropical Agriculture (IITA) analyzed the pedigree information of 623 sub-tropical maize inbred lines generated at the IITA maize breeding program to identify the key founder inbred lines. We also used 5032 SNP markers to assess the genetic similarities of the founder inbred lines with their progenies subsequently developed for specific target traits. The results of pedigree analysis and SNP markers-based similarity scores identified 20 key founder inbred lines with significant contributions to the development of drought tolerant, early maturing, productive, Striga resistant, provitamin A enriched, and quality protein maize inbred lines. In our breeding program, line TZMi501 belonging to a flint heterotic group (HGA), and TZMi407-S and TZMi214, representing the dent heterotic group (HGB), were identified as the most useful founder inbred lines. The 623 inbred lines were consistently separated into four clusters based on Ward's hierarchical clustering, structure, and principal component analyses, with the 20 founder inbred lines spread into all clusters. The founder inbred lines were more genetically related to the productive inbred lines but showed genetic divergence from the provitamin A enriched inbred lines. These results provide a better understanding of the breeding history of the sub-tropical maize inbred lines to facilitate parental selection aligned to existing heterotic groups for use in breeding programs targeting the improvement of essential traits in maize.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359401 | PMC |
http://dx.doi.org/10.1038/s41598-023-38980-3 | DOI Listing |
Maize ( L.) production in sub-Saharan Africa can be improved by using hybrids with genetic resistance to maize lethal necrosis (MLN). This study aimed to assess the general (GCA) and specific combining ability (SCA), reciprocal effects, and quantitative genetic basis of MLN resistance and agronomic traits in tropical maize inbred lines.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.
Background: Cancer-associated fibroblasts (CAFs) are a pivotal component of the tumor microenvironment (TME), playing key roles in tumor initiation, metastasis, and chemoresistance. While glycosylation is known to regulate various cellular processes, its impact on CAFs activation remains insufficiently explored.
Methods: We assessed the correlation between bisecting GlcNAc levels and CAFs markers (α-SMA, PDGFRA, PDGFRB) in breast cancer tissues.
Theor Appl Genet
January 2025
CSIRO Agriculture and Food, 2 Clunies Ross Street, Acton, ACT, 2601, Australia.
In this first QTL mapping study of embryo size in barley, novel and stable QTL were identified and candidate genes underlying a significant locus independent of kernel size were identified based on orthologous analysis and comparison of the whole-genome assemblies for both parental genotypes of the mapping population. Embryo, also known as germ, in cereal grains plays a crucial role in plant development. The embryo accounts for only a small portion of grain weight but it is rich in nutrients.
View Article and Find Full Text PDFNature
January 2025
National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
The tetraploid genome and clonal propagation of the cultivated potato (Solanum tuberosum L.) dictate a slow, non-accumulative breeding mode of the most important tuber crop. Transitioning potato breeding to a seed-propagated hybrid system based on diploid inbred lines has the potential to greatly accelerate its improvement.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Management, Institute of Environmental Engineering, People's Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation.
Developing high-yielding and resilient maize hybrids is essential to ensure its sustainable production with the ongoing challenges of considerable shifts in global climate. This study aimed to explore genetic diversity among exotic and local maize inbred lines, evaluate their combining ability, understand the genetic mechanisms influencing ear characteristics and grain yield, and identify superior hybrids suited for timely and late sowing conditions. Seven local and exotic maize inbred lines were genotyped using SSR (Simple Sequence Repeat) markers to assess their genetic diversity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!