Understanding the dynamics of suturing and cratonisation and their implications are vital in estimating the link between the lithospheric mantle architecture and geothermal resources. We propose new interpretations of the Western Arabian Shield's geodynamic styles and geothermal anomalies. In this work, features of the crust and mantle were interpreted from geophysical modeling to unravel the structural dynamics between the Arabian Shield and the Red Sea rift, as well as the influence of these mechanisms on the uplift of the Cenozoic basalts. Estimates of the lower crust thermal properties were also achieved. Spectral properties of the potential field were used to define the Curie isotherm, heat fluxes, geothermal gradients, radiogenic heat production, Moho configuration, and lithosphere-asthenosphere boundary. Results show new structural styles, micro-sutures, and significant thermal anomalies. The defined geothermal patterns were inferred to be due to localized initiation of tectonic and asthenospheric disequilibrium during the rifting episodes within the Red Sea. Also, magma mixing is initiated by the northward migration of magma from the Afar plume towards the Western Arabian Shield which drives local mantle melts beneath the western Arabia, thereby providing the pressure field required for magma ascent. The ascendant magma flow provides the heating source of geothermal reservoirs within the Western Arabian Shield. However, there are indications that during the episodes of rifting within the Red Sea and/or ancient Pan-African activities, the mixing process may have been altered resulting in crustal thinning and creating pathways of ascendant magma flow along the MMN volcanic line. Integrating geophysical and geothermal models indicated new zones of suturing and extensional tectonics between the amalgamated terranes. The geodynamic interpretation shows a new redistribution of terranes and continuous compressional and transtentional movements within the Arabian Shield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359420 | PMC |
http://dx.doi.org/10.1038/s41598-023-38321-4 | DOI Listing |
Sci Rep
January 2025
Saudi Geological Survey, P.O Box: 54141, Jeddah, 21514, Kingdom of Saudi Arabia.
Recent reconnaissance geochemical investigations have unveiled Cryogenian magmatism linked to the compressional accretionary phase, contributing to the growth of the Afif Terrane in the eastern Arabian Shield. The Cryogenian Suwaj intrusive suite, within the Afif Terrane, displays a compositional range from gabbro-diorite to tonalite-granodiorite. The uniform compositional variation is primarily due to magmatic differentiation within parental magma across multiple pulses.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Medical BioSciences, Radboud University Medical Center, The Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain. Electronic address:
Messenger RNA is a highly promising biotherapeutic modality with great potential in preventive and therapeutic vaccination, and in the modulation of cellular function through transient expression of therapeutic proteins. However, for cellular delivery, mRNA requires packaging into delivery vehicles that mediate uptake and also shield the mRNA against degradation. Lipid-coated calcium phosphate (LCP) nanoparticles encapsulate the mRNA in a calcium phosphate core, which is coated by a bilayer of structural lipids, positively charged lipids and pegylated lipid to mediate cellular uptake and achieve colloidal stabilization.
View Article and Find Full Text PDFSci Rep
November 2024
Geology Department, Faculty of Science, Menoufia University, Shiben El Kom, 51123, Egypt.
In this study, we explore thrust system, flower structures and transpressive duplexes in the Zeidun-Kareim belt (ZKB) in the Egyptian Nubian Shield (ENS; northwestern ANS). Filed observations and the measured stretched lineations along thrust planes reveal two main thrusting directions; ESE- (to NE- and NNE-)- and NW- (to WNW-)-directions belonging to two main phases of contraction. The timing of both phases is indirectly constrained.
View Article and Find Full Text PDFGeochem Trans
October 2024
Department of Earth Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
The magmatic complex along the Marsa Alam-Idfu transect, Central-Eastern Desert of Egypt, represents the northern segment of the Arabian-Nubian Shield (ANS), which developed within the framework of the East African Orogen. The basement rocks of the Arabian-Nubian Shield have been developed through three distinct phases of magmatic activity: the island-arc, the syn-orogenic, and the post-orogenic phases. Transitioning of the magmatic phases from the syn-orogenic to the post-orogenic, identifies changing the tectonic regime from a compressional to an extensional setting.
View Article and Find Full Text PDFGeochem Trans
August 2024
Nuclear Materials Authority, P.O. Box 530, El Maadi Cairo, Egypt.
The South Eastern Desert (SED) of Egypt is one of the most promising areas in Egypt; it is widely explored for exploring the rare earth elements (REEs) and uranium-bearing ores. It is a main part of the Arabian-Nubian Shield (ANS). Therefore, the present study concerns with Sikait-Nugrus area as one of the most prolific sites in this region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!