Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K over Na in the absence of the canonical tetrameric K selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na channel with >100-fold larger Na to K permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K versus Na selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359266PMC
http://dx.doi.org/10.1038/s41467-023-40041-2DOI Listing

Publication Analysis

Top Keywords

structures channelrhodopsin
4
channelrhodopsin paralogs
4
paralogs peptidiscs
4
peptidiscs explain
4
explain contrasting
4
contrasting selectivities
4
selectivities kalium
4
kalium channelrhodopsin
4
channelrhodopsin hyphochytrium
4
hyphochytrium catenoides
4

Similar Publications

Structural Insights Into the Opening Mechanism of C1C2 Channelrhodopsin.

J Am Chem Soc

January 2025

PSI Center for Life Sciences, Laboratory for Biomolecular Research, Paul Scherrer Institut, Villigen 5232, Switzerland.

Channelrhodopsins, light-gated cation channels, enable precise control of neural cell depolarization or hyperpolarization with light in the field of optogenetics. This study integrates time-resolved serial crystallography and atomistic molecular dynamics (MD) simulations to resolve the structural changes during C1C2 channelrhodopsin activation. Our observations reveal that within the crystal environment, C1C2 predominantly remains in a light-activated state with characteristics of the M intermediate.

View Article and Find Full Text PDF

Light-activated channelrhodopsins: a revolutionary toolkit for the remote control of plant signalling.

New Phytol

February 2025

ARC Centre of Excellence in Plants for Space, School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Urrbrae, SA, 5064, Australia.

Channelrhodopsins (CHRs), originating within algae and protists, are membrane-spanning ion channel proteins that are directly activated and/or deactivated by specific wavelengths of light. Since 2005, CHRs have been deployed as genetically encoded optogenetic tools to rapidly advance understanding of neuronal networks. CHRs provide the opportunity to finely tune ion transport across membranes and regulate membrane potential.

View Article and Find Full Text PDF

Sodium-Selective Channelrhodopsins.

Cells

November 2024

Dynamics of Fluids, Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.

Channelrhodopsins (ChRs) are light-gated ion channels originally discovered in algae and are commonly used in neuroscience for controlling the electrical activity of neurons with high precision. Initially-discovered ChRs were non-selective cation channels, allowing the flow of multiple ions, such as Na, K, H, and Ca, leading to membrane depolarization and triggering action potentials in neurons. As the field of optogenetics has evolved, ChRs with more specific ion selectivity were discovered or engineered, offering more precise optogenetic manipulation.

View Article and Find Full Text PDF

Skeletal muscle activation using optogenetics has emerged as a promising technique for inducing noninvasive muscle contraction and assessing muscle function both in vivo and in vitro. Transgenic mice overexpressing the optogenetic fusion protein, Channelrhodopsin 2-EYFP (ChR2-EYFP) in skeletal muscle are widely used; however, overexpression of fluorescent proteins can negatively impact the functionality of activable tissues. In this study, we characterized the contractile properties of ChR2-EYFP skeletal muscle and introduced the ChR2-only mouse model that expresses light-responsive ChR2 without the fluorescent EYFP in their skeletal muscles.

View Article and Find Full Text PDF

Self-organizing brain organoids provide a promising tool for studying human development and disease. Here we created human forebrain organoids with stable and homogeneous expression of channelrhodopsin-2 (ChR2) by generating safe harbor locus-targeted, ChR2 knocked-in human pluripotent stem cells (hPSCs), followed by the differentiation of these genetically engineered hPSCs into forebrain organoids. The resulting ChR2-expressing human forebrain organoids showed homogeneous cellular expression of ChR2 throughout entire regions without any structural and functional perturbations and displayed consistent and robust neural activation upon light stimulation, allowing for the non-virus mediated, spatiotemporal optogenetic control of neural activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!