Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Seven-exo-dig hydrocarboxylation of nonactivated internal alkynes with conformationally flexible linker chains was achieved with cooperative gold-zinc catalysts composed of an imidazo[1,5-a]pyridinylidene ligand including a bipyridine coordination site at the C5 position. A proximity effect of the gold and zinc sites was essential for their high catalytic activity, in which the internal alkyne activated by the cationic gold species was attacked by the carboxylic acid deprotonated by the basic zinc site. Using a gold(I)-complex with a bulky aromatic N-substituent, 2,6-dibenzhydryl-4-methylphenyl group, for the NHC ligand facilitated seven-membered ring formation while minimizing intermolecular hydrocarboxylation as an undesired side reaction. The reaction mechanism was investigated by quantum chemical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202301917 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!