Small breeding programs are limited in achieving competitive genetic gain and prone to high rates of inbreeding. Thus, they often import genetic material to increase genetic gain and to limit the loss of genetic variability. However, the benefit of import depends on the strength of genotype-by-environment interaction. Import also diminishes the relevance of domestic selection and the use of domestic breeding animals. Introduction of genomic selection has potentially exacerbated this issue, but is also opening the potential for smaller breeding programs. The aim of this paper was to determine when and to what extent small breeding programs benefit from importing genetic material by quantifying the genetic gain as well as the sources of genetic gain. We simulated 2 cattle breeding programs of the same breed that represented a large foreign and a small domestic breeding program. The programs differed in selection parameters of sire selection, and in the initial genetic mean and annual genetic gain. We evaluated a control scenario without the use of foreign sires in the domestic breeding program and 24 scenarios that varied the percentage of domestic dams mated with foreign sires, the genetic correlation between the breeding programs (0.8 or 0.9), and the time of implementing genomic selection in the domestic compared with the foreign breeding program (concurrently or with a 10-yr delay). We compared the scenarios based on the genetic gain and genic standard deviation. Finally, we partitioned breeding values and genetic trends of the scenarios to quantify the contribution of domestic selection and import to the domestic genetic gain. The simulation revealed that when both breeding programs implemented genomic selection simultaneously, the use of foreign sires increased domestic genetic gain only when genetic correlation was 0.9 (10%-18% increase). In contrast, when the domestic breeding program implemented genomic selection with a 10-yr delay, import increased genetic gain at both tested correlations, 0.8 (5%-23% increase) and 0.9 (15%-53% increase). The increase was significant when we mated at least 10% or 25% domestic females with foreign sires and increased with the increasing use of foreign sires, but with a diminishing return. The partitioning analysis revealed that the contribution of import expectedly increased with the increased use of foreign sires. However, the increase did not depend on the genetic correlation and was not proportional to the increase in domestic genetic gain. This represents a peril for small breeding programs because they could be overly relying on import with diminishing returns for the genetic gain, marginal benefit for the genetic variability, and large loss of the domestic germplasm. The benefit and peril of import depends on an interplay of genetic correlation, extent of using foreign sires, and a breeding scheme. It is therefore crucial that small breeding programs assess the possible benefits of import beyond domestic selection. The benefit of import should be weighed against the perils of decreased use of domestic sires and decreased contribution and value of domestic selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2022-23132 | DOI Listing |
JCO Precis Oncol
January 2025
Department of Medical Oncology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.
Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).
View Article and Find Full Text PDFJ R Stat Soc Ser C Appl Stat
January 2014
Columbia University, New York, USA.
We consider non-parametric estimation of disease onset distribution functions in multiple populations by using censored data with unknown population identifiers. The problem is motivated from studies aiming at estimating the age-specific disease risk distribution in deleterious mutation carriers for genetic counselling and design of therapeutic intervention trials to modify disease progression (i.e.
View Article and Find Full Text PDFJBMR Plus
February 2025
INSERM UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, F-69008 Lyon, France.
OI, or bone brittle disease, is characterized by increased mineralization of bone matrix independently of clinical severity. So, a beneficial effect of antiresorptive treatments such as bisphosphonates (BP) is questionable. We aim to compare the bone matrix characteristics before and after BP pamidronate (PAM).
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Molecular Medicine, Cardiovascular and Renal Research Unit, University of Southern Denmark, Odense M, Denmark.
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT receptor (ATR), and in contrast the protective axis, which includes the receptors Mas, ATR and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease.
View Article and Find Full Text PDFJNCI Cancer Spectr
January 2025
Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA.
Head and neck paragangliomas (HNPGLs) are typically slow-growing, hormonally inactive tumors of parasympathetic paraganglia. Inactivation of prolyl-hydroxylase domain-containing 2 protein causing indirect gain-of-function of hypoxia-inducible factor-2α (HIF-2α), encoded by EPAS1, was recently shown to cause carotid body hyperplasia. We previously described a syndrome with multiple sympathetic paragangliomas caused by direct gain-of-function variants in EPAS1 (Pacak-Zhuang syndrome, PZS) and developed a corresponding mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!