Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This study aimed to investigate the impact and mechanism of gut microbiota on the enhancement of cognitive function in methamphetamine (MA)-dependent individuals during aerobic exercise training.
Methods: A total of sixty-four MA-dependent individuals were randomly assigned to either an aerobic exercise training group (DK, n = 32) or a conventional rehabilitation group (CK, n = 32). After an eight-week intervention, the participants' working memory and inhibition ability were assessed using the Stroop paradigm and Go/NoGo paradigm, respectively. Gut microbiota composition was analyzed using high-throughput sequencing.
Results: 1) Eight weeks of aerobic exercise training significantly improved the working memory and inhibition ability of MA-dependent individuals (P < 0.05). 2) Following the intervention, the DK group exhibited significantly higher levels of Lactobacillus, Lactococcus lactis, Prevotellaceae, and Ruminococcaceae compared to the CK group. Conversely, the DK group demonstrated significantly lower levels of Desulfovibrio and Akkermansia compared to the CK group. Furthermore, the DK group showed significantly increased metabolic pathways associated with d-Glutaralate and d-Galactate Degradation, as well as the Alanine, aspartate, and glutamate metabolism pathway, compared to the control group. 3) Cognitive function related to MA addiction positively correlated with Bifidobacterium, Dialister, and Adlercreutzia, while negatively correlated with Enterobacteria, Bacillus cereus, Catabacter, and Akkermansia.
Conclusion: Aerobic exercise training enhances working memory and inhibition ability in MA-dependent individuals, thereby mitigating the detrimental effects of MA addiction on cognitive function. Additionally, analysis of gut microbiota suggests that the modulation of gut microbiota and associated metabolic pathways play a role in regulating the improvement of cognitive function in MA-dependent individuals through exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2023.114302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!