A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estimation of background concentrations of macro- and trace elements in an aquatic plant as a basis for the passive biomonitoring of pollution. | LitMetric

Estimation of background concentrations of macro- and trace elements in an aquatic plant as a basis for the passive biomonitoring of pollution.

Sci Total Environ

Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland.

Published: November 2023

Chemical pollution was indicated as a global environmental problem since elevated concentrations of toxic substances were recorded in almost all ecosystems worldwide. Trace elements, released to environment due to industrial, agricultural and urban activities, are of special concern due to their non-degradability, persistence, bioaccumulation in organisms and potential toxicity. Reliable methods for assessing the level of pollution are essential for proper monitoring and control of pollution. A useful tool for this purpose is the geochemical background (GB), which enables to differentiate between unpolluted and polluted areas as well as calculate pollution indices. The study presents the first attempt to estimate the background values for aquatic plants using cosmopolitan submerged aquatic macrophyte Ceratophyllum demersum as a model species. Water and plant samples were collected from 117 water bodies. Contents of 15 elements (As, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, V, Zn) were determined using atomic absorption spectrometry and flame photometry. Four methods were tested for estimation of the background concentrations: Median ± 2Median Absolute Deviation, Iterative 2σ technique, Tukey box-plot, Grouping of data with 60 % coefficient of variation (CV). Wide ranges of element concentrations in water and various values of Contamination Factor indicated to a variety of natural and anthropogenic impacts in the studied area, which confirmed that the database covered a real environmental variability. Very different estimates of background concentrations were obtained depending on the method. The highest background values were usually given by Me±2MAD method. Grouping of data with 60 % CV was most exigent in defining a site as undisturbed, therefore this method was recommended as the most suitable for estimation of the background values for C. demersum. Pollution Load Index validated the use of estimated background concentrations as reliable for bioindication of pollution in aquatic reservoirs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165652DOI Listing

Publication Analysis

Top Keywords

background concentrations
16
estimation background
12
background values
12
trace elements
8
grouping data
8
data 60 %
8
pollution
7
background
7
concentrations
6
concentrations macro-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!