Microplastics are emerging pollutants that are ubiquitously present in environment. Occurrence and dispersion of microplastics in the soil can pose a considerable risk to soil health and biodiversity, including the plants grown in the soil. Uptake and bioaccumulation of microplastics can have detrimental effects on different plant species. Additionally, the co-presence of microplastics and arsenic can cause synergistic, antagonistic, or potentiating toxic impacts on plants. However, limited studies are available on the combined effects of microplastics and arsenic on plants. This paper elucidates both the individual and synergistic effects of microplastics and arsenic on plants. At the outset, the paper highlighted the presence and degradation of microplastics in soil. Subsequently, the interactions between microplastics and plants, accumulation, and influences of microplastics on plant growth and metabolism were explained with underlying mechanisms. Combined effects of microplastics and arsenic on plant growth, metabolism, and toxicity were discussed thereafter. Combined toxic effects of microplastics and arsenic on plants can have detrimental implications on environment, ecosystems and biodiversity. Further investigations on food chain and human health are needed in the context of microplastic-arsenic interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139542DOI Listing

Publication Analysis

Top Keywords

microplastics arsenic
24
effects microplastics
20
arsenic plants
16
microplastics
11
microplastics soil
8
combined effects
8
plant growth
8
growth metabolism
8
plants
7
effects
6

Similar Publications

Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms.

J Environ Manage

December 2024

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:

The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.

View Article and Find Full Text PDF

Effects of naturally aged microplastics on arsenic and cadmium accumulation in lettuce: Insights into rhizosphere microecology.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.

View Article and Find Full Text PDF

Combined effects of polymethylmethacrylate microplastics with arsenic and copper on the euryhaline rotifer Proales similis.

Aquat Toxicol

December 2024

Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico.

Aquatic organisms are typically exposed to chemical mixtures, including microplastics and metal(loid)s. However, most research has primarily focused on the toxicity of individual chemicals, potentially overestimating their risks to aquatic life. This study examined the combined effects of polymethylmethacrylate microplastics (PMMA-MPs) with As and Cu at environmentally relevant concentrations on the euryhaline rotifer Proales similis.

View Article and Find Full Text PDF

Survey on the presence of floating microplastics, trace metals and metalloids in seawater from Southern Italy to the United States of America.

Ecotoxicol Environ Saf

December 2024

Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90100, Italy.

The presence of microplastics (MPs), trace metals (TM) and metalloids (Ms) in surface seawater is a severe emerging issue of global concern. Information about the distribution of these pollutants is often lacking, and large-scale studies come with uncertainties because of difficult comparisons of results obtained using different methods to collect and process data. This study presents a comprehensive investigation of microplastics (MPs), trace metals (TM) and metalloids (Ms) in surface seawater during two transatlantic sampling campaigns, covering approximately 17,000 nautical miles.

View Article and Find Full Text PDF

The growing use of artificial turf in place of natural turf in residential, recreational and commercial settings has raised concerns regarding its potential impact on human health. A systematic review of databases revealed 5673 articles of which, 30 were deemed eligible. Those performing total concentration analyses, bioaccessibility analyses or human health risk assessments (HHRAs) of artificial turf fibres or crumb rubber infill were of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!