Diabetic cognitive decline has been associated with the gut microbial disorders, but its potential gut-brain axis mechanisms remain unclear. Herein we transplanted the gut microbiota from healthy mice into type 1 diabetic (T1D) mice and then investigated the effect of fecal microbiota transplantation (FMT) on cognitive function and the gut-brain metabolic axis. The results demonstrate that FMT from healthy mice effectively improved the learning and memory abilities in T1D mice, and significantly reduced neuroinflammation and neuron injury in the cortex and hippocampus. Moreover, FMT partly reversed the gut microbiota and gut-brain metabolic disorders, particularly glutamate metabolism. In vitro study, we found that glutamate notably decreased microglia activation and the expression levels of proinflammatory factor. Hence, our study suggests that glutamate serves as a key signal metabolite connecting the gut to brain and affects cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110638DOI Listing

Publication Analysis

Top Keywords

healthy mice
12
gut-brain metabolic
12
microbiota healthy
8
cognitive decline
8
metabolic axis
8
gut microbiota
8
t1d mice
8
mice
6
microbiota
4
mice alleviates
4

Similar Publications

Inflammatory bowel disease, particularly Crohn's disease (CD), has been linked to modifications in mesenteric adipose tissue (MAT) and the phenomenon known as "creeping fat" (CrF). The presence of CrF is believed to serve as a predictor for early clinical recurrence following surgical intervention in patients with CD. Notably, the incorporation of the mesentery during ileocolic resection for CD has been correlated with a decrease in surgical recurrence, indicating the significant role of MAT in the pathogenesis of CD.

View Article and Find Full Text PDF

Adipose tissue may not be a major player in the inflammatory pathogenesis of Autism Spectrum Disorder.

Brain Behav Immun Health

February 2025

Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.

Purpose: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder increasingly recognized for its strong association with chronic inflammation. Adipose tissue functions as an endocrine organ and can secrete inflammatory cytokines to mediate inflammation. However, its involvement in ASD-related inflammation remains unclear.

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (, , , , , , , and ) and decreasing harmful bacteria (, , , , , and ) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!