A cell-electrode interface signal-to-noise ratio model for 3D micro-nano electrode.

J Neural Eng

Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, People's Republic of China.

Published: August 2023

. Three-dimensional micro-nano electrodes (MNEs) with the vertical nanopillar array distributed on the surface play an increasingly important role in neural science research. The geometric parameters of the nanopillar array and the cell adhesion state on the nanopillar array are the factors that may affect the MNE recording. However, the quantified relationship between these parameters and the signal-to-noise ratio (SNR) is still unclear. This paper establishes a cell-MNE interface SNR model and obtains the mathematical relationship between the above parameters and SNR.. The equivalent electrical circuit and numerical simulation are used to study the sensing performance of the cell-electrode interface. The adhesion state of cells on MNE is quantified as engulfment percentage, and an equivalent cleft width is proposed to describe the signal loss caused by clefts between the cell membrane and the electrode surface.. Whether the planar substrate is insulated or not, the SNR of MNE is greater than planar microelectrode only when the engulfment percentage is greater than a certain value. Under the premise of maximum engulfment percentage, the spacing and height of nanopillars should be minimized, and the radius of the nanopillar should be maximized for better signal quality.. The model can clarify the mechanism of improving SNR by nanopillar arrays and provides the theoretical basis for the design of such nanopillar neural electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ace933DOI Listing

Publication Analysis

Top Keywords

nanopillar array
12
engulfment percentage
12
cell-electrode interface
8
signal-to-noise ratio
8
adhesion state
8
relationship parameters
8
nanopillar
6
snr
5
interface signal-to-noise
4
ratio model
4

Similar Publications

The controllable synthesis of epitaxial nanopillar arrays is fundamentally important to the development of advanced electrical and optical devices. However, this fascinating growth method has rarely been applied to the bottom-up synthesis of plasmonic nanostructure arrays (PNAs) with many broad, important, and promising applications in optical sensing, nonlinear optics, surface-enhanced spectroscopies, photothermal conversion, photochemistry, etc. Here, a one-step epitaxial approach to single-crystalline NbTiN (NbTiN) nanopillar arrays based on the layer plus island growth mode is demonstrated by strain engineering.

View Article and Find Full Text PDF

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has shown its ability to characterize biological substances down to a single-molecule level without a specific biorecognition mechanism. Various nanofabrication technologies enable SERS substrate prototyping and mass manufacturing. This study reports a complete cycle of design, fabrication, prototyping, and metrology of SERS substrates based on two-photon polymerization (2PP).

View Article and Find Full Text PDF

Growth and properties of hybrid Au-CoNinanowires embedded in SrTiO/SrTiO(001).

Nanotechnology

December 2024

Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, UMR7588, F-75005 Paris, France.

We present a sequential growth scheme based on pulsed laser deposition, which yields dense arrays of ultrathin, match-shaped Au/CoNi nanopillars, vertically embedded in SrTiOthin films. Analysis of the magnetic properties of these nanocomposites reveals a pronounced out-of-plane anisotropy. We show that the latter not only results from the peculiar nanoarchitecture of the hybrid films but is further enhanced by strong magneto-structural coupling of the wires to the surrounding matrix.

View Article and Find Full Text PDF

We develop a new all-dielectric metasurface for designing high quality-factor (-factor) quasi-bound states in the continuum (quasi-BICs) using asymmetry kite-shaped nanopillar arrays. The -factors of quasi-BICs follow the quadratic dependence on the geometry asymmetry, and meanwhile their resonant spectral profiles can be readily tuned between Fano and Lorentzian lineshapes through the interplay with the broadband magnetic dipole mode. The third-harmonic signals of quasi-BIC modes exhibit a gain from 43.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!