The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease.

Int Immunopharmacol

Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India. Electronic address:

Published: September 2023

AI Article Synopsis

Article Abstract

Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110666DOI Listing

Publication Analysis

Top Keywords

unconventional cells
16
celiac disease
12
therapeutic target
8
inkt mait
8
unconventional
5
cells
5
emerging paradigm
4
paradigm unconventional
4
cells novel
4
novel therapeutic
4

Similar Publications

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Serotonergic Mechanisms in Proteinoid-Based Protocells.

ACS Chem Neurosci

January 2025

Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.

This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids.

View Article and Find Full Text PDF

Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B.

Differentiation

January 2025

Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France. Electronic address:

Matrix Metalloproteinases (MMPs) are known for their role in matrix remodeling via their catalytic activities in the extracellular space. Interestingly, these enzymes can also play less expected roles in cell survival, polarity and motility via other substrates (e.g.

View Article and Find Full Text PDF

Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable.

View Article and Find Full Text PDF

Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion.

J Extracell Vesicles

January 2025

IPMC, UMR7275 CNRS-UniCA, INSERM U1323, team certified "Laboratory of Excellence (LABEX) Distalz", Valbonne, France.

Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!