Improving the cellobiose hydrolysis activity of glucose-stimulating β-glucosidase Bgl2A.

Enzyme Microb Technol

School of Life Sciences, Anhui University; Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing; Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis; Hefei, Anhui 230601, China. Electronic address:

Published: September 2023

AI Article Synopsis

  • Researchers engineered a β-glucosidase enzyme, Bgl2A, to enhance its ability to break down cellobiose with increased catalytic activity and tolerance to glucose.
  • A total of 18 mutants were created, with variants A22S, V224D, and A22S/V224D showing significantly higher activity—about 2.5 to 2.8 times that of the original enzyme.
  • The A22S variant notably produced the highest glucose level when tested with cellobiose, and its combination with commercial cellulase showed promising results for more efficient cellulose breakdown.

Article Abstract

β-Glucosidases with high catalytic activity and glucose tolerant properties possess promising applications in lignocellulose-based industries. To obtain enzymes possessing these properties, a semi-rational strategy was employed to engineer the glucose-stimulating β-glucosidase Bgl2A for high cellobiose hydrolysis activity. A total of 18 mutants were constructed. A22S, V224D, and A22S/V224D exhibited high specific activities of 272.06, 237.60, and 239.29 U/mg toward cellobiose, which were 2.5- to 2.8-fold of Bgl2A. A22S, V224D, and A22S/V224D exhibited increased k values, which were 2.7- to 3.1-fold of Bgl2A. A22S and V224D maintained glucose-stimulating property, whereas A22S/V224D lost it. Using 150 g/L cellobiose as the substrate, the amount of glucose produced by A22S was the highest, yielding 129.70 g/L glucose after 3 h reaction at 35 °C. The synergistic effects of the engineered enzymes with commercial cellulase on hydrolyzing cellulose were investigated. Supplemented with the commercial cellulase and A22S, the highest glucose amount of 23.30 g/L was yielded from cellulose with hydrolysis rate of 21.02 %. Given its high cellobiose hydrolysis activity and glucose-stimulating properties, A22S can be used as a component of enzyme cocktail to match mesophilic cellulases for efficient cellulose hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2023.110289DOI Listing

Publication Analysis

Top Keywords

cellobiose hydrolysis
12
hydrolysis activity
12
a22s v224d
12
activity glucose-stimulating
8
glucose-stimulating β-glucosidase
8
β-glucosidase bgl2a
8
high cellobiose
8
v224d a22s/v224d
8
a22s/v224d exhibited
8
bgl2a a22s
8

Similar Publications

In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %.

View Article and Find Full Text PDF

Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production.

View Article and Find Full Text PDF

Enhanced Cellobiose Production from Cellulose by CaCl-Phosphoric Acid Pretreatment for the Efficient Preparation of Astragalin in Recombinant .

J Agric Food Chem

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

Cellulose, as the most abundant and cheap renewable resource in nature, is of great importance for its utilization. An enzymatic cellulose solution, mainly containing cellobiose and glucose, was utilized to produce astragalin instead of cellobiose in the recombinant strains. However, the crystalline structure of cellulose affects the production of cellobiose, resulting in a low astragalin yield.

View Article and Find Full Text PDF

This study aimed to compare the effects of cellobiose hydrolysis, whether occurring inside or outside the cell, on the ability of Saccharomyces cerevisiae strains to ferment this sugar and then apply the most effective strategy to industrial S. cerevisiae strains. Firstly, two recombinant laboratory S.

View Article and Find Full Text PDF

In this study, we report the molecular and enzymatic characterisation of Spg103, a novel bifunctional β-glucanase from the marine bacterium sp. J103. Recombinant Spg103 (rSpg103) functioned optimally at 60 °C and pH 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!