Topoisomerase II (TopoII) is a critical component of HIV-1 integration, proviral DNA synthesis, and reverse transcription. During HIV-1 infection, the TopoIIβkinase (TopoIIβK) phosphorylates TopoIIβ. Our earlier research demonstrated that the pyridine scaffold has potent anti-HIV-1 activity by specifically inhibiting TopoIIβK activity. 3D QSAR results showed the presence of molecular features for interaction with TopoIIβK requiring chemically induced proximity for potential interaction. In this study, the chalcone and methyl groups were added to the pyridine scaffold's core to achieve the desired proximity length between the pyridine scaffold and charged centers, which resulted in an inhibitory activity against TopoIIβK and viral replication. According to the findings, the TopoIIβKactivity was inhibited by the inclusion of the pyridine scaffold with the chalcone group, leading to better anti-HIV-1 activity. The water-soluble methylated pyridinium chalcones' showed significant TopoIIβK antagonism, anti-HIV-1 activity (from IC > 500 nM to ID 25 nM), and reduced cytotoxicity (CC = 2 mM). These activities could be associated with the charge on the pyridine and extended proximity. Therefore, it is clear that within the scope of this work, altering the proximity length and charge centers of pyridine molecules are critical for the design and development of effective anti-HIV-1 leads, specifically targeting TopoIIβK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2023.115623 | DOI Listing |
mBio
January 2025
Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Unlabelled: Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2 cells.
View Article and Find Full Text PDFNoncoding RNA
January 2025
Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland.
Background: Despite tremendous advances in antiretroviral therapy (ART) against HIV-1 infections, no cure or vaccination is available. Therefore, discovering novel therapeutic strategies remains an urgent need. In that sense, miRNAs and miRNA therapeutics have moved intensively into the focus of recent HIV-1-related investigations.
View Article and Find Full Text PDFFront Immunol
January 2025
Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Antiretroviral therapy is the standard treatment for HIV, but it requires daily use and can cause side effects. Despite being available for decades, there are still 1.5 million new infections and 700,000 deaths each year, highlighting the need for better therapies.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School Hospital, Guizhou Medical University, Guiyang, China.
Thunb. (. ) is a shrub or tree of the genus , family Lamiaceae, which is widely distributed in China, Korea, India, Japan and Philippines.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China; Institute of Flow Chemistry and Engineering, School of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:
In order to enhance the anti-HIV-1 potency and selectivity of the previously reported compound 3 (EC = 27 nM, SI = 1361), a series of novel biphenyl-diarylpyrimidine derivatives were developed by employing structure-based drug design strategy. Among these derivatives, compound M44 demonstrated the most potent inhibitory activity against wild-type (WT) HIV-1 as well as five drug-resistant mutants (EC = 5-148 nM), which were 5-173 times more potent than that of 3 (EC = 27-9810 nM). Furthermore, this analogue exhibited approximately 11-fold lower cytotoxicity (CC = 54 μM) than that of etravirine and rilpivirine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!