Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Series of novel 1,2,3-triazole, and 1,2,3- triazoline glycosides (a-e) were efficiently synthesized starting from d-arabinose in an effort to synthesize a new type of hybrid molecules containing sugar azide. The key step involved is the introduction of a new group, ethylene glycol, to the anomeric site and protection of the hydroxyl groups with acetic anhydride. Following that, the acetyl group is converted into ethylene glycol to tosylate. Compound Azido ethyl-O-β-d-arabinofuranoside 4 was synthesized with good yield by treating the derivative 3 with sodium azide, which displaced the tosylate 3 and replaced it with the azide group. The new glycosides were synthesized via a 1,3-dipolar cycloaddition reaction between the intermediate compound 4 and several alkenes and alkynes. The triazole and triazoline compounds were characterized by FT-IR, H NMR, C NMR, LC/MS-IT-TOF spectral, and C·H.N. analysis. The antimicrobial screening was assayed using the disc diffusion technique revealed moderate to high potential inhibitory values against three test microorganisms compared to standard drugs. Their pharmacokinetics evaluation also showed promising drug-likeness and ADME properties. Furthermore, density functional theory (DFT) was utilized to obtain the molecular geometry of the title compounds utilizing B3LYP/6-311G++ (d, p), molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs) through the investigation of HOMO and LUMO orbitals, and energy gap value. A lower energy gap value denotes that electrons can be transported more easily, indicating that molecule (b) is more reactive than other compounds. Molecular docking analysis revealed that all the designed triazole and triazoline glycosides interacted strongly inside the active site of the enzyme (PDB ID: 2Q85). and exhibits high docking scores, higher than the standard drug. The range of docking scores is -7.99 kcal/mol compound (a) to -7.42 kcal/mol compound (e).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2023.108877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!