A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning methods for anomaly classification in wastewater treatment plants. | LitMetric

Machine learning methods for anomaly classification in wastewater treatment plants.

J Environ Manage

University of Trento, Department of Information Engineering and Computer Science, via Sommarive 9, Trento, 38123, Italy.

Published: October 2023

Modern wastewater treatment plants base their biological processes on advanced control systems which ensure compliance with discharge limits and minimize energy consumption responding to information from on-line probes. The correct readings of probes are particularly crucial for intermittent aeration controllers, which rely on real-time measurements of ammonia and oxygen in biological tanks. These data are also an important resource for developing artificial intelligence algorithms that can identify process or sensor anomalies, thus guiding the choices of plant operators and automatic process controllers. However, using anomaly detection and classification algorithms in real-time wastewater treatment is challenging because of the noisy nature of sensor measurements, the difficulty of obtaining labeled real-plant data, and the complex and interdependent mechanisms that govern biological processes. This work aims at thoroughly exploring the performance of machine learning methods in detecting and classifying the main anomalies in plants operating with intermittent aeration. Using oxygen, ammonia and aeration power measurements from a set of plants in Italy, we perform both binary and multiclass classification, and we compare them through a rigorous validation procedure that includes a test on an unknown dataset, proposing a new evaluation protocol. The classification methods explored are support vector machine, multilayer perceptron, random forest, and two gradient boosting methods (LightGBM and XGBoost). The best performance was achieved using the gradient boosting ensemble algorithms, with up to 96% of anomalies detected and up to 84% and 62% of anomalies classified correctly on the first and second datasets respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118594DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
machine learning
8
learning methods
8
treatment plants
8
biological processes
8
intermittent aeration
8
gradient boosting
8
methods
4
methods anomaly
4
classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!