The discovery of self-organization principles that enable scalable routes toward complex functional materials has proven to be a persistent challenge. Here, reaction-diffusion driven, immersion-controlled patterning (R-DIP) is introduced, a self-organization strategy using immersion-controlled reaction-diffusion for targeted line patterning in thin films. By modulating immersion speeds, the movement of a reaction-diffusion front over gel films is controlled, which induces precipitation of highly uniform lines at the reaction front. A balance between the immersion speed and diffusion provides both hands-on tunability of the line spacing ( ) as well as error-correction against defects. This immersion-driven patterning strategy is widely applicable, which is demonstrated by producing line patterns of silver/silver oxide nanoparticles, silver chromate, silver dichromate, and lead carbonate. Through combinatorial stacking of different line patterns, hybrid materials with multi-dimensional patterns such as square-, diamond-, rectangle-, and triangle-shaped motifs are fabricated. The functionality potential and scalability is demonstrated by producing both wafer-scale diffraction gratings with user-defined features as well as an opto-mechanical sensor based on Moiré patterning.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202305191DOI Listing

Publication Analysis

Top Keywords

thin films
8
immersion-controlled reaction-diffusion
8
demonstrated producing
8
patterning
4
patterning complex
4
complex motifs
4
motifs thin
4
films immersion-controlled
4
reaction-diffusion
4
reaction-diffusion discovery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!