Ecological dynamics are strongly influenced by the relationship between prey density and predator feeding behavior-that is, the predatory functional response. A useful understanding of this relationship requires us to distinguish between competing models of the functional response, and to robustly estimate the model parameters. Recent advances in this topic have revealed bias in model comparison, as well as in model parameter estimation in functional response studies, mainly attributed to the quality of data. Here, we propose that an adaptive experimental design framework can mitigate these challenges. We then present the first practical demonstration of the improvements it offers over standard experimental design. Our results reveal that adaptive design can efficiently identify the preferred functional response model among the competing models, and can produce much more precise posterior distributions for the estimated functional response parameters. By increasing the efficiency of experimentation, adaptive experimental design will lead to reduced logistical burden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358903PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288445PLOS

Publication Analysis

Top Keywords

functional response
24
experimental design
16
adaptive experimental
12
competing models
8
functional
6
response
6
design
5
adaptive
4
design produces
4
produces superior
4

Similar Publications

Smart Cell Therapy: an industry perspective on macrophages as living drugs.

Cytotherapy

December 2024

Barcia Novel Therapies, Lexington, Massachusetts, USA. Electronic address:

Macrophage-based cell therapies represent a cutting-edge frontier in immunotherapy, offering distinct advantages over conventional approaches like CAR-T. This review explores the potential of macrophages to orchestrate both innate and adaptive immune responses, enhancing the body's ability to combat diseases locally and systemically. Dubbed a "Smart Cell Therapy," macrophages can initiate and coordinate complex immunological cascades, leveraging multiple immune system components while also performing effector functions.

View Article and Find Full Text PDF

Avian Reovirus: From Molecular Biology to Pathogenesis and Control.

Viruses

December 2024

Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.

Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.

View Article and Find Full Text PDF

Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs.

View Article and Find Full Text PDF

Background/objectives: The efficacy of monovalent BNT162b2 Omicron XBB.1.5 booster vaccination in liver transplant recipients (LTRs) has yet to be described, particularly regarding the immune response to emerging variants like JN.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!