A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Consistent Implementation of a Solvation Free Energy Framework to Predict the Salt Solubilities of Six Alkali Halides. | LitMetric

To assess the salt solubilities of six alkali halides in aqueous systems, we proposed a thermodynamic cycle and an efficient molecular modeling methodology. The Gibbs free energy changes for vaporization, dissociation, and dissolution were calculated using the experimental data of ionic thermodynamic properties obtained from the NBS tables. Additionally, the Marcus' and Tissandier's solvation free energy data for Li, Na, K, Cl, and Br ions were compared with the conventional solvation free energies by substituting into our self-consistent thermodynamic cycle. Furthermore, Tissandier's absolute solvation free energy data were used as the training set to refit the Lennard-Jones parameters of OPLS-AA force field for ions. To predict salt solubilities, an assumption of a pseudo-solvent was proposed to characterize the coupling work of a solute with its environment from infinitely diluted to saturated solutions, indicating that the Gibbs energy change of solvation process is a function of ionic strength. Following the self-consistency of the cycle, the newly derived formulas were used to determine the salt solubilities by interpolating the intersection of Gibbs free energy of dissolution and the zero free energy line. The refined ion parameters can also predict the structure and thermodynamic properties of aqueous electrolyte solutions, such as densities, pair correlation functions, hydration numbers, mean activity coefficients, vapor pressures, and the radial dependences of the net charge at 298.15 K and 1 bar. Our method can be used to characterize the solid-liquid equilibria of ions or charged particles in aqueous systems. Furthermore, for highly concentrated strong electrolyte systems, it is essential to introduce accurate water models and polarizable force fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00083DOI Listing

Publication Analysis

Top Keywords

free energy
24
solvation free
16
salt solubilities
16
predict salt
8
solubilities alkali
8
alkali halides
8
aqueous systems
8
thermodynamic cycle
8
gibbs free
8
thermodynamic properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!