The development of human brain is shaped by both genetic and environmental factors. Sex differences in cognitive function have been found in humans as a result of sexual dimorphism in neural information transmission. Numerous studies have reported the positive effects of education on cognitive functions. However, little work has investigated the effect of education on attenuating cognitive sex differences and the neural mechanisms behind it based on healthy population. In this study, the Wisconsin Card Sorting Test (WCST) was employed to examine sex differences in cognitive function in 135 Thai healthy subjects, and label-free quantitative proteomic method and bioinformatic analysis were used to study sex-specific neurotransmission-related protein expression profiles. The results showed sex differences in two WCST sub-scores: percentage of Total corrects and Total errors in the primary education group (Bayes factor>100) with males performed better, while such differences eliminated in secondary and tertiary education levels. Moreover, 11 differentially expressed proteins (DEPs) between men and women (FDR<0.1) were presented in both education groups, with majority of them upregulated in females. Half of those DEPs interacted directly with nAChR3, whereas the other DEPs were indirectly connected to the cholinergic pathways through interaction with estrogen. These findings provided a preliminary indication that a cholinergic-estrogen interaction relates to, and might underpin, the effect of education on attenuating cognitive sex differences in a Thai healthy population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358962 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278080 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!