Retron-mediated multiplex genome editing and continuous evolution in Escherichia coli.

Nucleic Acids Res

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

Published: August 2023

While there are several genome editing techniques available, few are suitable for dynamic and simultaneous mutagenesis of arbitrary targeted sequences in prokaryotes. Here, to address these limitations, we present a versatile and multiplex retron-mediated genome editing system (REGES). First, through systematic optimization of REGES, we achieve efficiency of ∼100%, 85 ± 3%, 69 ± 14% and 25 ± 14% for single-, double-, triple- and quadruple-locus genome editing, respectively. In addition, we employ REGES to generate pooled and barcoded variant libraries with degenerate RBS sequences to fine-tune the expression level of endogenous and exogenous genes, such as transcriptional factors to improve ethanol tolerance and biotin biosynthesis. Finally, we demonstrate REGES-mediated continuous in vivo protein evolution, by combining retron, polymerase-mediated base editing and error-prone transcription. By these case studies, we demonstrate REGES as a powerful multiplex genome editing and continuous evolution tool with broad applications in synthetic biology and metabolic engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450171PMC
http://dx.doi.org/10.1093/nar/gkad607DOI Listing

Publication Analysis

Top Keywords

genome editing
20
multiplex genome
8
editing continuous
8
continuous evolution
8
editing
6
genome
5
retron-mediated multiplex
4
evolution escherichia
4
escherichia coli
4
coli genome
4

Similar Publications

Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.

View Article and Find Full Text PDF

Structural insights into how Cas9 targets nucleosomes.

Nat Commun

December 2024

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome.

View Article and Find Full Text PDF

Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells.

Nat Commun

December 2024

The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage.

Nat Commun

December 2024

Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.

View Article and Find Full Text PDF

Genetic Code Expansion: Recent Developments and Emerging Applications.

Chem Rev

December 2024

Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China.

The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!