RTEL1 is required for silencing and epigenome stability.

Nucleic Acids Res

Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, F-63000 Clermont-Ferrand, France.

Published: September 2023

AI Article Synopsis

  • Transcriptional silencing regulates gene expression through epigenetic modifications on chromatin, notably in Arabidopsis, where it involves DNA methylation and H3K27me3 marks.
  • The study identifies RTEL1, a DNA helicase, as crucial for maintaining this silencing; its absence leads to increased expression of silenced genes while not affecting DNA methylation levels at heterochromatic loci.
  • RTEL1 helps resolve DNA structures during replication and is essential in stabilizing epigenetic marks, revealing its significant role in the mechanisms controlling transcriptional silencing.

Article Abstract

Transcriptional silencing is an essential mechanism for controlling the expression of genes, transgenes and heterochromatic repeats through specific epigenetic marks on chromatin that are maintained during DNA replication. In Arabidopsis, silenced transgenes and heterochromatic sequences are typically associated with high levels of DNA methylation, while silenced genes are enriched in H3K27me3. Reactivation of these loci is often correlated with decreased levels of these repressive epigenetic marks. Here, we report that the DNA helicase REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) is required for transcriptional silencing. RTEL1 deficiency causes upregulation of many genes enriched in H3K27me3 accompanied by a moderate decrease in this mark, but no loss of DNA methylation at reactivated heterochromatic loci. Instead, heterochromatin exhibits DNA hypermethylation and increased H3K27me3 in rtel1. We further find that loss of RTEL1 suppresses the release of heterochromatin silencing caused by the absence of the MOM1 silencing factor. RTEL1 is conserved among eukaryotes and plays a key role in resolving DNA secondary structures during DNA replication. Inducing such aberrant DNA structures using DNA cross-linking agents also results in a loss of transcriptional silencing. These findings uncover unappreciated roles for RTEL1 in transcriptional silencing and in stabilizing DNA methylation and H3K27me3 patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484728PMC
http://dx.doi.org/10.1093/nar/gkad610DOI Listing

Publication Analysis

Top Keywords

transcriptional silencing
16
dna methylation
12
dna
10
rtel1 required
8
transgenes heterochromatic
8
epigenetic marks
8
dna replication
8
genes enriched
8
enriched h3k27me3
8
structures dna
8

Similar Publications

The most damaging disease affecting citrus globally is Huanglongbing (HLB), primarily attributed to the infection by ' asiaticus' (Las). Based on comparative transcriptome data, two cellulose synthase (CESA) genes responsive to Las infection induction were screened, and one gene cloned with higher differential expression level was selected and named . we verified the interaction between CsCESA1 and citrus exopolysaccharide 2 (CsEPS2) proteins.

View Article and Find Full Text PDF

Disulfidptosis, a recently identified pathway of cellular demise, served as the focal point of this research, aiming to pinpoint relevant lncRNAs that differentiate between hepatocellular carcinoma (HCC) with and without vascular invasion while also forecasting survival rates and responses to immunotherapy in patients with vascular invasion (VI+). First, we identified 300 DRLRs in the TCGA database. Subsequently, utilizing univariate analysis, LASSO-Cox proportional hazards modeling, and multivariate analytical approaches, we selected three DRLRs (AC009779.

View Article and Find Full Text PDF

Myotonia congenita, both in a dominant (Thomsen disease) and recessive form (Becker disease), is caused by molecular defects in that encodes the major skeletal muscle chloride channel, ClC-1. This channel is important for the normal repolarization of muscle action potentials and consequent relaxation of the muscle, and its dysfunction leads to impaired muscle relaxation after voluntary or evoked contraction and muscle stiffness. More than 300 pathogenic variants have been found in association with congenital myotonia, inherited as recessive or dominant traits (with complete or incomplete penetrance).

View Article and Find Full Text PDF

With a high mortality rate, colon cancer (CC) is the third most common malignant tumor worldwide. The primary causes are thought to be the high invasiveness and migration of CC cells. The functions of Golgi phosphoprotein 3 (GOLPH3), stress-induced phosphoprotein 1 (STIP1), and the signal transducer and activator of transcription 3 (STAT3) signaling pathway in the invasion and migration of CC cells were examined in this study.

View Article and Find Full Text PDF

Background: Physicians perform many difficult skills, but notifying loved ones about the death of a family member is a particularly challenging skill that requires specific training. Descriptions of such training are lacking in the literature. We developed a formative standardised patient encounter on death notification over the telephone for fourth-year medical students and evaluated their qualitative perspectives, including emotional safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: