A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Depression and anxiety have distinct and overlapping language patterns: Results from a clinical interview. | LitMetric

Depression has been associated with heightened use (; e.g., "I," "my") and words. However, past research has relied on nonclinical samples and nonspecific depression measures, raising the question of whether these features are unique to depression vis-à-vis frequently co-occurring conditions, especially anxiety. Using structured questions about recent life changes or difficulties, we interviewed a sample of individuals with varying levels of depression and anxiety ( = 486), including individuals in a major depressive episode ( = 228) and/or diagnosed with generalized anxiety disorder ( = 273). Interviews were transcribed to provide a natural language sample. Analyses isolated language features associated with gold standard, clinician-rated measures of depression and anxiety. Many language features associated with depression were in fact shared between depression and anxiety. Language markers with relative specificity to depression included , , and decreased while (e.g., "not," "no"), and several emotional language markers (e.g., ) were relatively specific to anxiety. Several of these results were replicated using a self-report measure designed to disentangle components of depression and anxiety. We next built machine learning models to detect severity of common and specific depression and anxiety using only interview language. Individuals' speech characteristics during this brief interview predicted their depression and anxiety severity, beyond other clinical and demographic variables. Depression and anxiety have partially distinct patterns of expression in spoken language. Monitoring of depression and anxiety severity via language can augment traditional assessment modalities and aid in early detection. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799169PMC
http://dx.doi.org/10.1037/abn0000850DOI Listing

Publication Analysis

Top Keywords

depression anxiety
36
depression
14
anxiety
11
language
9
language features
8
features associated
8
anxiety language
8
language markers
8
anxiety severity
8
anxiety distinct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!