AI Article Synopsis

  • The study investigated the effects of increasing plasma potassium (p-K) levels to the high-normal range on heart function in patients with lower ejection fraction (LVEF), suggesting potential benefits in reducing cardiovascular risks.
  • The research included 50 patients, who received guidance on potassium-rich diets and supplements, resulting in a significant increase in p-K levels and improvements in heart function measurements, including Global Longitudinal Strain (GLS) and diastolic parameters.
  • Findings indicate that raising p-K levels can enhance both systolic and diastolic myocardial function in patients with reduced LVEF, potentially lowering the risk of arrhythmias and heart-related issues.

Article Abstract

Plasma potassium (p-K) in the high-normal range has been suggested to reduce risk of cardiovascular arrythmias and mortality through electrophysiological and mechanical effects on the myocardium. In this study, it was to investigated if increasing p-K to high-normal levels improves systolic- and diastolic myocardial function in patients with low-normal to moderately reduced left ventricular ejection fraction (LVEF). The study included 50 patients (mean age 58 years (SD 14), 81% men), with a mean p-K 3.95 mmol/l (SD 0.19), mean LVEF 48% (SD 7), and mean Global Longitudinal Strain (GLS) -14.6% (SD 3.1) patients with LVEF 35-55% from "Targeted potassium levels to decrease arrhythmia burden in high-risk patients with cardiovascular diseases trial" (POTCAST). Patients were given standard therapy and randomized (1:1) to an intervention that included guidance on potassium-rich diets, potassium supplements, and mineralocorticoid receptor antagonists targeting high-normal p-K levels (4.5-5.0 mmol/l). Echocardiography was done at baseline and after a mean follow-up of 44 days (SD 18) and the echocardiograms were analyzed for changes in GLS, mechanical dispersion, E/A, e', and E/e'. At follow-up, mean difference in changes in p-K was 0.52 mmol/l (95%CI 0.35;0.69), P<0.001 in the intervention group compared to controls. GLS was improved with a mean difference in changes of -1.0% (-2;-0.02), P<0.05 and e' and E/e' were improved with a mean difference in changes of 0.9 cm/s (0.02;1.7), P = 0.04 and ? 1.5 (-2.9;-0.14), P = 0.03, respectively. Thus, induced increase in p-K to the high-normal range improved indices of systolic and diastolic function in patients with low-normal to moderately reduced LVEF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673982PMC
http://dx.doi.org/10.1007/s10554-023-02914-xDOI Listing

Publication Analysis

Top Keywords

plasma potassium
8
myocardial function
8
p-k high-normal
8
p-k
5
patients
5
increased plasma
4
potassium
4
potassium myocardial
4
function randomized
4
randomized potcast
4

Similar Publications

The Shab family potassium channels are highly enriched at the presynaptic terminals of human neurons.

J Biol Chem

January 2025

Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO 80523, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:

The Shab family voltage-gated K channels (i.e., Kv2.

View Article and Find Full Text PDF

Metallofullerenol Gd@C(OH) preserves human erythrocyte plasma membrane integrity from AAPH-induced oxidative stress: molecular mechanisms and antioxidant activity.

Free Radic Biol Med

January 2025

Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, 04-141 Warsaw, Poland. Electronic address:

Metallofullerenols and fullerenols have attracted attention due to their remarkable ability to interact with various biologically relevant molecules, paving the way for biomedical applications, ranging from medical imaging techniques to drug carriers, acting with increased efficiency and reduced side effects. In this work, we investigated the effects of two fullerene derivatives, Gd@C(OH) and C(OH), on erythrocyte membrane components under oxidative stress conditions induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as a source of peroxyl radicals. The results demonstrated that gadolinium encapsulation within the fullerene cage enhanced the electron affinity of Gd@C(OH), resulting in stronger antioxidant activity.

View Article and Find Full Text PDF

In Situ Analysis of Plant Tissue Using Arc iKnife Ionization Mass Spectrometry.

Anal Chem

January 2025

Cigar Technology Innovation Center of China Tobacco, Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu 610066, People's Republic of China.

This study developed a portable arc iKnife ionization mass spectrometry (AII-MS) technique integrating a surgical knife with low-temperature arc plasma to interact with plant tissues. The thermal energy from the arc plasma induces the sputtering of water-containing plant tissues, leading to the formation of aerosols. These aerosols are then charged by plasma-generated ions, producing charged microdroplets that are ultimately detected by a mass spectrometer.

View Article and Find Full Text PDF

Chemiluminescence of silver and nitrogen doped carbon dots induced by potassium ferricyanide/hydrogen peroxide and its analytical application.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, Shanxi, PR China. Electronic address:

In this study, carbon dots doped with silver and nitrogen (Ag,N-CDs) were synthesized and their application in chemiluminescence (CL) was investigated using the potassium ferricyanide/hydrogen peroxide (KFe(CN)/HO) reaction. Theoretical calculations reveal that Ag doping facilitates a lower excitation energy. The experimental conditions influencing the CL reaction were examined and optimized.

View Article and Find Full Text PDF

A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance.

Dev Cell

January 2025

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!