A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heterogeneous Ice Nucleation in Model Crystalline Porous Organic Polymers: Influence of Pore Size on Immersion Freezing. | LitMetric

Heterogeneous Ice Nucleation in Model Crystalline Porous Organic Polymers: Influence of Pore Size on Immersion Freezing.

J Phys Chem A

Department of Chemistry, The Pennsylvania State University, Chemistry Building, University Park, Pennsylvania 16802, United States.

Published: August 2023

Heterogeneous ice nucleation activity is affected by aerosol particle composition, crystallinity, pore size, and surface area. However, these surface properties are not well understood, regarding how they act to promote ice nucleation and growth to form ice clouds. Therefore, synthesized materials for which surface properties can be tuned were examined in immersion freezing mode in this study. To establish the relationship between particle surface properties and efficiency of ice nucleation, materials, here, covalent organic frameworks (COFs), with different pore diameters and degrees of crystallinity (ordering), were characterized. Results showed that out of all the highly crystalline COFs, the sample with a pore diameter between 2 and 3 nm exhibited the most efficient ice nucleation activity. We posit that the highly crystalline structures with ordered pores have an optimal pore diameter where the ice nucleation activity is maximized and that the not highly crystalline structures with nonordered pores have more sites for ice nucleation. The results were compared and discussed in the context of other synthesized porous particle systems. Such studies give insight into how material features impact ice nucleation activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c00071DOI Listing

Publication Analysis

Top Keywords

ice nucleation
32
nucleation activity
16
surface properties
12
highly crystalline
12
heterogeneous ice
8
nucleation
8
pore size
8
immersion freezing
8
ice
8
pore diameter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!