Nicotinamide Adenine Dinucleotide Phosphate Oxidase Promotes Glioblastoma Radiation Resistance in a Phosphate and Tensin Homolog-Dependent Manner.

Antioxid Redox Signal

The Intellectual and Developmental Disabilities Research Center and the Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

Published: November 2023

The goal of this study was to determine whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-produced reactive oxygen species (ROS) enhance brain tumor growth of glioblastoma (GBM) under hypoxic conditions and during radiation treatment. Exogenous ROS promoted brain tumor growth in gliomasphere cultures that expressed functional phosphate and tensin homolog (PTEN), but not in tumors that were PTEN deficient. Hypoxia induced the production of endogenous cytoplasmic ROS and tumor cell growth activation of NOX. NOX activation resulted in oxidation of PTEN and downstream protein kinase B (Akt) activation. Radiation also promoted ROS production NOX, which, in turn, resulted in cellular protection that could be abrogated by knockdown of the key NOX component, p22. Knockdown of p22 also inhibited tumor growth and enhanced the efficacy of radiation in PTEN-expressing GBM cells. While other studies have implicated NOX function in GBM models, this study demonstrates NOX activation and function under physiological hypoxia and following radiation in GBM, two conditions that are seen in patients. NOX plays an important role in a PTEN-expressing GBM model system, but not in PTEN-nonfunctional systems, and provides a potential, patient-specific therapeutic opportunity. This study provides a strong basis for pursuing NOX inhibition in PTEN-expressing GBM cells as a possible adjunct to radiation therapy. . 39, 890-903.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775910PMC
http://dx.doi.org/10.1089/ars.2022.0086DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
pten-expressing gbm
12
nicotinamide adenine
8
adenine dinucleotide
8
dinucleotide phosphate
8
phosphate tensin
8
brain tumor
8
nox
8
nox activation
8
gbm cells
8

Similar Publications

HIFU induces reprogramming of the tumor immune microenvironment in a pancreatic cancer mouse model.

Med Mol Morphol

January 2025

Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.

This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed.

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumour with limited treatment options and poor outcomes in advanced metastatic cases. Current immunotherapies show limited efficacy, highlighting the need for novel therapeutic approaches. Systemic immune activation by Toll-like receptor 4 (TLR4) immunostimulants has shown great promise; however, current TLR4 agonists' toxicity hinders this systemic approach in patients with osteosarcoma.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

The main objective of this work is to study the mathematical model that combines stem cell therapy and chemotherapy for cancer cells. We study the model using the fractal fractional derivative with the Mittag-Leffler kernel. In the analytical part, we study the existence of the solution and its uniqueness, which was studied based on the fixed point theory.

View Article and Find Full Text PDF

The role of human epidermal growth factor 2 (HER2) in male breast cancer (MBC) is poorly defined. A comprehensive description of HER2 status was conducted. A total of 6,015 MBC patients from 45 studies and 135 MBC patients with sequencing data were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!