Triangulene and its derivatives show broad application prospects in the fields of biological imaging and biosensing. However, its interaction with cell membranes is still poorly studied. In this study, classical molecular dynamics simulations were used to adjust the electrostatic potential of triangulene to observe its interactions with cell membranes. We found that electrostatic potential not only affects the behavior as it enters the cell membrane, but also spatial distribution within the cell membrane. The angle distribution of inside-0 and all-0 triangulene when penetrating the membrane is more extensive than that of ESP triangulene. However, inside-0 triangulene could cross the midline of the cell membrane and prefers to stay in the upper leaflet, while all-0 triangulene and ESP triangulene can reach the lower leaflet. These findings can help us regulate the distribution of nanoparticles in cells, so as to design functional nanoparticles that conform to the requirements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352715 | PMC |
http://dx.doi.org/10.1039/d3ra03259k | DOI Listing |
Soft Matter
January 2025
National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, People's Republic of China.
Ethylene-vinyl acetate (EVA) film is the predominant encapsulation material in crystalline silicon photovoltaic modules, the efficient and eco-friendly processing of which is essential for the recycling of the modules. Among the various existing techniques, the chemical approach uses solvents to induce swelling and dissolution on the EVA film to facilitate the separation of distinct layers. This method demonstrates the potential for achieving low-energy consumption and minimal-damage retrieval of the diverse materials within the components.
View Article and Find Full Text PDFPLoS One
January 2025
Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan.
Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical engineering, Military Technical College, Cairo, Egypt.
This study reports on the facile development of star-shaped gold nanoparticles via seed-mediated growth protocol. Gold nanostars (AuNSTs) demonstrated average particle size of 48 nm using transmission electron microscopy (TEM). Chemical composition of AuNSTs was verifired using energy dispersive X-ray spectroscopy (EDX) mapping.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
The rate of reaction between ions in solution depends on solvent properties like permittivity and ionic strength. The influence of a solution's ionic strength is described by the Brønsted-Bjerrum equation. We show how this equation can be derived directly from transition-state theory without introducing the concept of activity coefficients.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
MaterialX LTD, Bristol BS4 1NF, U.K.
A challenging topic in materials engineering is the development of numerical models that can accurately predict material properties with atomistic accuracy, matching the scale and level of detail achieved by experiments. In this regard, coarse-grained (CG) molecular dynamics (MD) simulations are a popular method for achieving this goal. Despite the efforts of the scientific community, a reliable CG model with quasi-atomistic accuracy has not yet been fully achieved for the design and prototyping of materials, especially polymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!