Autism spectrum disorder is a severe, life-prolonged neurodevelopmental disease typified by disabilities that are chronic or limited in the development of socio-communication skills, thinking abilities, activities, and behavior. In children aged two to three years, the symptoms of autism are more evident and easier to recognize. The major part of the existing literature on autism spectrum disorder is covered by a prediction system based on traditional machine learning algorithms such as support vector machine, random forest, multiple layer perceptron, naive Bayes, convolution neural network, and deep neural network. The proposed models are validated by using performance measurement parameters such as accuracy, precision, and recall. In this research, autism spectrum disorder prediction has been investigated and compared using common parameters such as application type, simulation method, comparison methodology, and input data. The key purpose of this study is to give a centralized framework to use for researchers working on autism spectrum disorder prediction. The best results were obtained by using the random forest algorithm as it performs better than other traditional machine learning algorithms. The achieved accuracy is 89.23%. The workflow representations of the investigated frameworks assist readers in comprehending the fundamental workings and architectures of these frameworks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352530PMC
http://dx.doi.org/10.1155/2023/4853800DOI Listing

Publication Analysis

Top Keywords

autism spectrum
20
spectrum disorder
20
machine learning
12
traditional machine
8
learning algorithms
8
random forest
8
neural network
8
disorder prediction
8
autism
6
spectrum
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!