Chiral induction by natural biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we present the synthesis and characterization of an achiral supramolecular organic framework (SOF-1) constructed from cucurbit[8]uril (CB[8]) and hexaphenylbenzene (HPB) derivative (1) in water. Due to the propeller-like rotational chiral conformation of HPB units and the specific recognition properties of CB[8], SOF-1 demonstrates chiral adaptive induction in water when interacting with the N-terminal Trp-/Phe-containing dipeptides including L-TrpX and L-PheX (X is an amino acid residue), respectively, exhibiting contrasting circular dichroism (CD) and circularly polarized luminescence (CPL) spectra. Consequently, SOF-1 has been developed as a supramolecular host and chiroptical sensor capable of recognizing and distinguishing the sequence-opposite Trp-/Phe-containing dipeptide pairs including L-TrpX/L-XTrp and L-PheX/L-XPhe based on the sequence-selective CD responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202308029 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China. Electronic address:
The chiral alcohols (S)-4-chloro-3-hydroxy-butyric acid ethyl ester ((S)-CHBE) is a critical intermediate in the synthesis of various active pharmaceutical ingredients. This study presents the first investigation of the efficient production of (S)-CHBE using organic-inorganic hybrid nanoflowers (GDH-CR@HNFs) for the co-immobilization of glucose dehydrogenase (BsGDH) and carbonyl reductase (BsCR). By optimizing immobilization conditions, we significantly enhanced the catalytic activity and immobilization efficiency of the hybrid nanoflowers.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.
Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!