Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sweet peppers are popular worldwide due to their nutrition and taste. Conventional vegetable tracing methods have been trialed, but the application of such labels or tags can be laborious and expensive, making their commercial application impractical. What is needed is a label-free method that can identify features unique to each individual fruit. Our research team has noted that sweet peppers have unique textural fluorescence features when observed under UV light that could potentially be used as a label-free signature for identification of individual fruit as it travels through the postharvest supply chain. The objective of this research was to assess the feature of these sweet pepper features for identification purposes. The macroscopic and microscopic images were taken to characterize the fluorescence. The results indicate that all sweet peppers possess dot-like fluorescence features on their surface. Furthermore, it was observed that 93.60% of these features exhibited changes in fluorescence intensity within the cuticle layer during the growth of a pepper. These features on the macro-image are visible under 365 nm UV light, but challenging to be seen under white LEDs and to be classified from the fluorescence spectrum under 365 nm light. This research reported the fluorescence feature on the sweet pepper, which is invisible under white light. The results show that the uniqueness of fluorescent features on the surface of sweet peppers has the potential to become a traceability technology due to the presence of its unique physical modality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s43630-023-00459-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!