Temporal context is a crucial factor in timing. Previous studies have revealed that the timing of regular stimuli, such as isochronous beats or rhythmic sequences (termed beat-based timing), activated the basal ganglia, whereas the timing of single intervals or irregular stimuli (termed duration-based timing) activated the cerebellum. We conducted a functional magnetic resonance imaging (fMRI) experiment to determine whether top-down processing of perceptual duration-based and beat-based timings affected brain activation patterns. Our participants listened to auditory sequences containing both single intervals and isochronous beats and judged either the duration of the intervals or the tempo of the beats. Whole-brain analysis revealed that both duration judgments and tempo judgments activated similar areas, including the basal ganglia and cerebellum, with no significant difference in the activated regions between the two conditions. In addition, an analysis of the regions of interest revealed no significant differences between the activation levels measured for the two tasks in the basal ganglia as well as the cerebellum. These results suggested that a set of common brain areas were involved in top-down processing of both duration judgments and tempo judgments. Our findings indicate that perceptual duration-based timing and beat-based timing are driven by stimulus regularity irrespective of top-down processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-023-06665-y | DOI Listing |
J Exp Psychol Hum Percept Perform
January 2025
Faculte de Psychologie et des Sciences de l'Education, Universite de Geneve.
Visual working memory (VWM) is a core cognitive system enabling us to select and briefly store relevant visual information. We recently observed that more salient items were recalled more precisely from VWM and demonstrated that these effects of salience resisted manipulations of reward, probability, and selection history. Here, we investigated whether and how salience interacts with shifts of attention induced by pre- and retrocueing.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.
Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.
View Article and Find Full Text PDFFront Psychol
December 2024
Department of Developmental Psychology and Socialization, University of Padova, Padua, Italy.
Background: The present study investigated whether semantic processing of word and object primes can bias visual attention using top-down influences, even within an exogenous cueing framework. We hypothesized that real words and familiar objects would more effectively bias attentional engagement and target detection than pseudowords or pseudo-objects, as they can trigger prior knowledge to influence attention orienting and target detection.
Methods: To examine this, we conducted two web-based eye-tracking experiments that ensured participants maintained central fixation on the screen during remote data collection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!