Various infectious agents affect human health via the oral entrance. The majority of pathogens lack approved vaccines. Oral vaccination is a convenient, safe and cost-effective approach with the potential of provoking mucosal and systemic immunity and maintaining individual satisfaction. However, vaccines should overcome the intricate environment of the gastrointestinal tract (GIT). Oral protein-based antigen vaccines (OPAVs) are easier to administer than injectable vaccines and do not require trained healthcare professionals. Additionally, the risk of needle-related injuries, pain, and discomfort is eliminated. However, OPAVs stability at environmental and GIT conditions should be considered to enhance their stability and facilitate their transport and storage. These vaccines elicit the local immunity, protecting GIT, genital tract and respiratory epithelial surfaces, where numerous pathogens penetrate the body. OPAVs can also be manipulated (such as using specific incorporated ligand and receptors) to elicit targeted immune response. However, low bioavailability of OPAVs necessitates development of proper protein carriers and formulations to enhance their stability and efficacy. There are several strategies to improve their efficacy or protective effects, such as incorporation of adjuvants, enzyme inhibitors, mucoadhesive or penetrating devices and permeation enhancers. Hence, efficient delivery of OPAVs into GIT require proper delivery systems mainly including smart target systems, probiotics, muco-adhesive carriers, lipid- and plant-based delivery systems and nano- and microparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-023-03629-2DOI Listing

Publication Analysis

Top Keywords

oral protein-based
8
protein-based antigen
8
antigen vaccines
8
enhance stability
8
delivery systems
8
vaccines
6
opavs
5
updated review
4
oral
4
review oral
4

Similar Publications

This study explores the use of chicken egg white (EW), a rich source of natural proteins, to address challenges in wound healing management. Herein, a novel Zn-infused EW/GelMA (EW/Gel) hybrid hydrogel is developed, featuring an interpenetrating network (IPN) structure, where the first network consists of photo-cross-linked GelMA and the second network consists of Zn-infused EW (Zn-EW) through ion-protein binding. By optimizing the design and formulation, the resulting Zn-EW/Gel hydrogel exhibited enhanced mechanical stability and self-adhesive properties.

View Article and Find Full Text PDF

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

Core-shell aerogel design for enhanced oral insulin delivery.

Int J Pharm

January 2025

AerogelsLab, I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain. Electronic address:

Current protein-based therapies often rely on intravenous and subcutaneous injections leading to patient discomfort due to the need for frequent administration. Oral administration route presents a more patient-friendly alternative, but overcoming the challenge of low drug bioavailability remains paramount. This limitation is primarily attributed to protein degradation in the harsh gastric environment, enzymatic breakdown, and poor intestinal permeability.

View Article and Find Full Text PDF

Advancing coenzyme Q10 delivery with plant protein-based nanoparticle-mediated nanosuspensions.

Food Res Int

December 2024

Department of Biotechnology and Food Engineering and Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel. Electronic address:

Coenzyme Q10 (CoQ10) possesses significant health-promoting potential, yet its oral delivery encounters obstacles stemming from its distinctive physicochemical characteristics, such as poor solubility, sensitivity to environmental factors and low bioaccessibility. To overcome these challenges, we developed high-payload CoQ10 nanosuspensions (CQ@SPNP, CQ@RPNP, and CQ@WPNP) using plant-based protein nanoparticles (NPs) derived from soybean (SPNP), rice (RPNP), and walnut (WPNP). The nanosuspensions include spherical particles, characterized by small particle size (<230 nm), low polydispersity (PDI < 0.

View Article and Find Full Text PDF

Chitosan-melanin complex microsphere: A potential colonic delivery system for protein drugs.

Carbohydr Polym

January 2025

Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address:

The characteristics and performance of chitosan-based colon delivery systems are significantly influenced by the method of preparation. Insect chitosan-melanin complex (CMC) may offer superior attributes over traditional shrimp and crab chitosan (CS) for colon-targeted administration. This study used dung beetle CMC as the carrier matrix and comprehensively examined the impact of various crosslinking techniques on the colonic drug delivery efficacy of microspheres, encompassing drug loading, swelling, drug release behavior, adhesion, enzymatic degradation, and absorption enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!