Congenital anomalies of the kidney and urinary tract (CAKUT) are among the most common birth defects worldwide and a major cause of kidney failure in children. Extra-renal manifestations are also common. This study reviewed diseases associated with the Genomics England CAKUT-associated gene panel for ocular anomalies. In addition, each gene was examined for expression in the human retina and an ocular phenotype in mouse models using the Human Protein Atlas and Mouse Genome Informatics databases, respectively. Thirty-four (54%) of the 63 CAKUT-associated genes (55 'green' and 8 'amber') had a reported ocular phenotype. Five of the 6 most common CAKUT-associated genes (PAX2, EYA1, SALL1, GATA3, PBX1) that represent 30% of all diagnoses had ocular features. The ocular abnormalities found with most CAKUT-associated genes and with five of the six commonest were coloboma, microphthalmia, optic disc anomalies, refraction errors (astigmatism, myopia, and hypermetropia), and cataract. Seven of the CAKUT-associated genes studied (11%) had no reported ocular features but were expressed in the human retina or had an ocular phenotype in a mouse model, which suggested further possibly-unrecognised abnormalities. About one third of CAKUT-associated genes (18, 29%) had no ocular associations and were not expressed in the retina, and the corresponding mouse models had no ocular phenotype. Ocular abnormalities in individuals with CAKUT suggest a genetic basis for the disease and sometimes indicate the affected gene. Individuals with CAKUT often have ocular abnormalities and may require an ophthalmic review, monitoring, and treatment to preserve vision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728251 | PMC |
http://dx.doi.org/10.1007/s00467-023-06068-9 | DOI Listing |
Ocul Immunol Inflamm
January 2025
Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
Background: Posterior scleritis (PS) is a rare phenotype of scleritis. Comprehensive epidemiological studies on PS in children are limited. We aimed to report on its clinical and imaging features in one of the largest pediatric series to date.
View Article and Find Full Text PDFOphthalmology
January 2025
Department of Ophthalmology, Boston Children's Hospital, Boston, MA; Department of Ophthalmology, Harvard Medical School, Boston, MA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA. Electronic address:
Objective: Amblyopia is characterized by decreased visual acuity due to abnormal visual experience during development. It affects approximately three percent of the population and is associated with abnormal development of the visual cortex. Despite treatment, many patients have residual visual acuity deficits.
View Article and Find Full Text PDFBMC Biol
January 2025
Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Bioscience, University of Oslo, Oslo, Norway.
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.
View Article and Find Full Text PDFClin Genet
December 2024
Univ. Lille, CHU Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, CRMR Déficiences Intellectuelles de Causes Rares, Lille, France.
Intellectual Developmental Disorder with Dysmorphic Facies and Ptosis (IDDDFP) is a rare autosomal dominant syndrome caused by pathogenic variants in the BRPF1 gene, which is critical for chromatin regulation. This study expands the clinical and molecular spectrum of IDDDFP by analysing 29 new patients from 20 families with confirmed BRPF1 variants. Our cohort presented with a wide range of clinical features including developmental delay, intellectual disability (ID) and characteristic dysmorphic facial features such as ptosis, blepharophimosis and a broad nasal bridge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!