Moiré patterns formed by stacking atomically thin van der Waals crystals with a relative twist angle can give rise to notable new physical properties. The study of moiré materials has so far been limited to structures comprising no more than a few van der Waals sheets, because a moiré pattern localized to a single two-dimensional interface is generally assumed to be incapable of appreciably modifying the properties of a bulk three-dimensional crystal. Here, we perform transport measurements of dual-gated devices constructed by slightly rotating a monolayer graphene sheet atop a thin bulk graphite crystal. We find that the moiré potential transforms the electronic properties of the entire bulk graphitic thin film. At zero and in small magnetic fields, transport is mediated by a combination of gate-tuneable moiré and graphite surface states, as well as coexisting semimetallic bulk states that do not respond to gating. At high field, the moiré potential hybridizes with the graphitic bulk states due to the unique properties of the two lowest Landau bands of graphite. These Landau bands facilitate the formation of a single quasi-two-dimensional hybrid structure in which the moiré and bulk graphite states are inextricably mixed. Our results establish twisted graphene-graphite as the first in a new class of mixed-dimensional moiré materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-023-06290-3DOI Listing

Publication Analysis

Top Keywords

mixed-dimensional moiré
8
graphitic thin
8
moiré
8
van der
8
der waals
8
moiré materials
8
bulk graphite
8
moiré potential
8
bulk states
8
landau bands
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!