Given the widespread presence of plastics, especially in micro- and nanoscale sizes, in freshwater systems, it is crucial to identify a suitable model organism for assessing the potential toxic and teratogenic effects of exposure to plastic particles. Until now, the early life stage of freshwater organisms and the regeneration capacity in relation to plastic particles exposure is a still poorly investigated topic. In this study, we examine the teratogenic effect on diatom Cocconeis placentula and cnidarian Hydra vulgaris under controlled exposure conditions of poly(styrene-co-methyl methacrylate) (P(S-co-MMA)) particles. Significant effects were observed at the lowest concentrations (0.1 μg/L). A significant increase in the teratological frequency in C. placentula and a significant decrease in the regeneration rate in H. vulgaris were found at the lowest concentration. The delay in hydra regeneration impaired the feeding capacity and tentacles reactivity at 96 h of exposure. No effects on diatom growth were observed upon exposure to P(S-co-MMA) particles (0.1, 1, 100, 10,000 μg/L) for 28 days and these findings agree with other studies investigating algal growth. The application of the Teratogenic Risk Index, modified for diatoms, highlighted a moderate risk for the lowest concentration evaluating C. placentula and low risk at the lowest and the highest concentrations considering H. vulgaris. This study suggests the importance of testing organisms belonging to different trophic levels as diverse teratogenic effects can be found and the need to evaluate environmentally relevant concentrations of plastic particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165564DOI Listing

Publication Analysis

Top Keywords

plastic particles
16
teratogenic effects
12
freshwater organisms
8
ps-co-mma particles
8
lowest concentration
8
risk lowest
8
particles
6
teratogenic
5
exposure
5
effects environmental
4

Similar Publications

Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice.

Nanomaterials (Basel)

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.

View Article and Find Full Text PDF

Discovery and solution for microplastics: New risk carriers in food.

Food Chem

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Microplastics (MPs), as a kind of plastic particles with an equal volume size of less than 5 mm, similar to PM2.5 in the air, are causing severe contamination issues in food. Along with the food chain accumulation, they have been confirmed to appear in daily foods and cause serious health risks to the organisms.

View Article and Find Full Text PDF

The degradation of plastic waste is a major research challenge due to the adverse impacts of microplastic weathering on the environment and ecosystems. As a major source of plastic contamination comes from urban hydrosystems, studying MP degradation prior to their environmental dissemination is crucial. Through a combination of field sampling and laboratory experiments, this study provides a thorough statistical degradation comparison analysis between polyethylene in situ environmentally aged microplastics and artificially aged films.

View Article and Find Full Text PDF

Effect of fibrillation on the film-forming properties of soy protein isolate: Relationship between protein structural changes and the film-forming properties.

Food Chem

December 2024

College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:

Protein fibrillation has great potential for enhancing the emulsification, foaming, and gelling properties of proteins. However, its effects on protein film-forming properties are less well understood. In this study, soy protein isolate (SPI) was subjected to fibrillation at pH 2.

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!