Non-specific biofilm formation (biofouling) commonly occurs to the surface of biomedical devices, which causes infection to the human tissues and function loss after implantation. To enhance the antifouling properties on the bioinert hydrogel-based biomaterials, a novel surface grafting approach was developed using surface radical chain-transfer reaction mediated by DL-dithiothreitol (DTT), rather than catalyzed by cytotoxic metal ions. Zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes were grafted on the surface of poly(2-hydroxyethyl methacrylate--glycidyl methacrylate) (PHG) to obtain PHG-graft-PMPC (PHG--PMPC) hydrogel, which were shown to have tunable surface hydrophilicity while maintaining high water content and transparency. Elemental composition analysis and micromorphology demonstrated the success of surface grafting. Protein adhesion assays were carried out, showing the reduction of bovine serum albumin, lactoferrin, and lysozyme adhesion by ∼90%, 80%, and 70%, respectively, compared to the pristine hydrogels. Significant resistance of bacterial attachment was observed on the surface-modified hydrogels using gram-negativeand gram-positive, respectively. The PHG--PMPC hydrogel is potentially feasible in various biomedical applications, especially for preventing surface biofouling of ophthalmic implants and devices. Furthermore, this de novo approach provides a universal platform for surface functionalization via thiol-epoxy click chemistry and surface radical chain-transfer reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ace8dc | DOI Listing |
Nano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!