Memory-related processing is the primary driver of human hippocampal theta oscillations.

Neuron

Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA. Electronic address:

Published: October 2023

AI Article Synopsis

Article Abstract

Decades of work in rodents suggest that movement is a powerful driver of hippocampal low-frequency "theta" oscillations. Puzzlingly, such movement-related theta increases in primates are less sustained and of lower frequency, leading to questions about their functional relevance. Verbal memory encoding and retrieval lead to robust increases in low-frequency oscillations in humans, and one possibility is that memory might be a stronger driver of hippocampal theta oscillations in humans than navigation. Here, neurosurgical patients navigated routes and then immediately mentally simulated the same routes while undergoing intracranial recordings. We found that mentally simulating the same route that was just navigated elicited oscillations that were of greater power, higher frequency, and longer duration than those involving navigation. Our findings suggest that memory is a more potent driver of human hippocampal theta oscillations than navigation, supporting models of internally generated theta oscillations in the human hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685603PMC
http://dx.doi.org/10.1016/j.neuron.2023.06.015DOI Listing

Publication Analysis

Top Keywords

theta oscillations
16
hippocampal theta
12
driver human
8
human hippocampal
8
driver hippocampal
8
oscillations humans
8
oscillations
7
theta
5
memory-related processing
4
processing primary
4

Similar Publications

Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Brain Struct Funct

January 2025

Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.

Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.

View Article and Find Full Text PDF

Substance use disorders (SUDs) are a significant public health concern, with over 30% failing available treatment. Severe SUD is characterized by drug-cue reactivity that predicts treatment-failure. We leveraged this pathophysiological feature to personalize deep brain stimulation (DBS) of the nucleus accumbens region (NAc) in an SUD patient.

View Article and Find Full Text PDF

Debilitating anxiety is pervasive in the modern world. Choices to approach or avoid are common in everyday life and excessive avoidance is a cardinal feature of all anxiety disorders. Here, we used intracranial EEG to define a distributed prefrontal-limbic circuit dynamics supporting approach and avoidance.

View Article and Find Full Text PDF

Neuronal theta oscillation of hippocampal ensemble and memory function.

Behav Brain Res

January 2025

Department of Neurology, Changzhi People's Hospital, Changzhi, 046000, Shanxi Province, China. Electronic address:

Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes.

View Article and Find Full Text PDF

Introduction: Multitasking during flights leads to a high mental workload, which is detrimental for maintaining task performance. Electroencephalography (EEG) power spectral analysis based on frequency-band oscillations and microstate analysis based on global brain network activation can be used to evaluate mental workload. This study explored the effects of a high mental workload during simulated flight multitasking on EEG frequency-band power and microstate parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!