Inorganic tin-lead binary perovskites have piqued the interest of researchers as effective absorbers for thermally stable solar cells. However, the nonradiative recombination originating from the surface undercoordinated Sn cations and the energetic offsets between different layers cause an excessive energy loss and deteriorate the perovskite device's performance. In this study, we investigated two thioamide derivatives that differ only in the polar part connected to their common benzene ring, namely, benzenecarbothioamide and 4-fluorophenylcarbothioamide (F-TBA). These two molecules were implemented as modifiers onto the inorganic tin-lead perovskite (CsPbSnIBr) surface in the perovskite solar cells. Modifiers that carry C═S and NH functional groups, equipped with lone electron pairs, can autonomously associate with surface Sn through coordination and electrostatic attraction mechanisms. This interaction serves effectively to passivate the surface. In addition, due to the permanent dipole moment of the intermediate layer, an interfacial dipole field appears at the PCBM/CsPbSnIBr interface, reducing the electron extraction potential barrier. Consequently, the planar solar cell with an ITO/PEDOT:PSS/CsPbSnIBr/PCBM/BCP/Ag layered structure featuring an F-TBA surface post-treatment demonstrated a noteworthy power conversion efficiency of 14.01%. Simultaneously, after being stored for 1000 h in an inert atmosphere glovebox, the non-encapsulated CsPbSnIBr solar cells managed to preserve 94% of their original efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c07018 | DOI Listing |
Nanomaterials (Basel)
December 2024
Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu 300093, Taiwan.
Three new bithiophene imide (BTI)-based organic small molecules, (), (), and (), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!