Despite the rapid development of versatile metal-organic frameworks (MOFs), the synthesis of water-stable MOFs remains challenging, which significantly limits their practical applications. Herein, a novel engineering strategy was developed to prepare superhydrophobic MOFs by an fluorinated microporous organic network (FMON) coating. Through controllable modification, the resulting MOF@FMON retained the porosity and crystallinity of the pristine MOFs. Owing to the superhydrophobicity of the FMON and the feasibility of MOF synthesis, the FMON coating could be integrated with various water-sensitive MOFs to provide superhydrophobicity. The coating thickness and hydrophobicity of the MOF@FMON composites were easily regulated by changing the FMON monomer concentration. The MOF@FMON composites exhibited excellent oil/water separation and catalytic activities and enhanced durability in aqueous solutions. This study provides a general approach for the synthesis of superhydrophobic MOFs, expanding the application scope of MOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c08458 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Laboratory for Structural Engineering and Sustainable Catalysis, Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
The upsurging of cost-effective electrocatalysts through the operando electro-oxidation approaches holds great promise for the scalable production of green energy in the pursuit of energy sustainability. This work introduces an operando electro-oxidation reconstitution strategy in producing a smart electrocatalyst, cobalt "oxyhydroxide" derived from a newly designed 2D cobalt(II) metal-organic framework (-) directly grown on nickel foam (NF), . The electrocatalyst, , exhibits an outstanding overpotential of 76 mV for the hydrogen evolution reaction and 336 mV for the oxygen evolution reaction to achieve a current density of 10 mA/cm with remarkable Faradaic efficiencies of 97.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
Two-dimensional (2D) covalent organic frameworks (COFs) with designable pore structures can be synthesized under the guidance of topology diagrams. Among the five existing edge-transitive topological nets, topology is considered a fine candidate for constructing COFs with ultramicropores. However, all of the reported COFs with topology need the use of -symmetric monomers, which are limited in compound type and difficult to synthesize.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology, South China Advanced Institute for Soft Matter Science and Technology, South China Advanced Institute for Soft Matter Science and Technology, 510640, Guangzhou, CHINA.
The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Polymers of intrinsic microporosity (PIMs) are an emerging class of amorphous organic porous materials with solution processability, which are widely used in a multitude of fields such as gas separation, ion conduction, nanofiltration, etc. PIMs have adjustable pore structure and functional pore wall, so it can achieve selective sieving for specific substances. In order to meet the functional requirements of PIMs, two principal methods are used to synthesize functional PIMs, namely, post-modification of PIMs precursors and functionalization of monomers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!