Spatial localization ability is crucial for free-living animals to fit the environment. As shown by previous studies, planarians can be conditioned to discriminate directions. However, due to their simplicity and primitiveness, they had never been considered to have true spatial localization ability to retrieve locations of objects and places in the environment. Here, we introduce a light maze training paradigm to demonstrate that a planarian worm can navigate to a former recognized place from the start point, even if the worm is transferred into a newly produced maze. This finding identifies the spatial localization ability of planarians for the first time, which provides clues for the evolution of spatial learning. Since the planarians have a primitive brain with simple structures, this paradigm can also provide a simplified model for a detailed investigation of spatial learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355441 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288118 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!