Because of its favorable thermodynamics and fast kinetics, heterogeneous solid nucleation on membranes triggers early-stage mineral scaling. Iron (hydr)oxide, a typical membrane scale, initially forms as nanoparticles that interact with surface functional groups on membranes, but these nanoscale phenomena are difficult to observe in real time. In this study, we utilized grazing incidence small angle X-ray scattering and atomic force microscopy to examine the heterogeneous nucleation of iron (hydr)oxide on surface functional groups commonly used in membranes, including hydroxyl (OH), carboxyl (COOH), and fluoro (F) groups. We found that, compared to nucleation on hydrophilic OH- and COOH-surfaces, the high hydrophobicity of an F-modified surface significantly reduced the extents of both heterogeneously and homogeneously formed iron (hydr)oxide nucleation. Moreover, on the OH-surface, the high functional group density of 0.76 nmol/cm caused faster heterogeneous nucleation than that on a COOH-surface, with a density of 0.28 ± 0.04 nmol/cm. The F-surface also had the highest heterogeneous nucleation energy barrier (26 ± 0.6 kJ/mol), followed by COOH- (23 ± 0.8 kJ/mol) and OH- (20 ± 0.9 kJ/mol) surfaces. The kinetic and thermodynamic information provided here will help us better predict the rates and extents of early-stage scaling of iron (hydr)oxide nanoparticles in membrane processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c01528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!