A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DeepTraSynergy: drug combinations using multimodal deep learning with transformers. | LitMetric

DeepTraSynergy: drug combinations using multimodal deep learning with transformers.

Bioinformatics

Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614411, Iran.

Published: August 2023

Motivation: Screening bioactive compounds in cancer cell lines receive more attention. Multidisciplinary drugs or drug combinations have a more effective role in treatments and selectively inhibit the growth of cancer cells.

Results: Hence, we propose a new deep learning-based approach for drug combination synergy prediction called DeepTraSynergy. Our proposed approach utilizes multimodal input including drug-target interaction, protein-protein interaction, and cell-target interaction to predict drug combination synergy. To learn the feature representation of drugs, we have utilized transformers. It is worth noting that our approach is a multitask approach that predicts three outputs including the drug-target interaction, its toxic effect, and drug combination synergy. In our approach, drug combination synergy is the main task and the two other ones are the auxiliary tasks that help the approach to learn a better model. In the proposed approach three loss functions are defined: synergy loss, toxic loss, and drug-protein interaction loss. The last two loss functions are designed as auxiliary losses to help learn a better solution. DeepTraSynergy outperforms the classic and state-of-the-art models in predicting synergistic drug combinations on the two latest drug combination datasets. The DeepTraSynergy algorithm achieves accuracy values of 0.7715 and 0.8052 (an improvement over other approaches) on the DrugCombDB and Oncology-Screen datasets, respectively. Also, we evaluate the contribution of each component of DeepTraSynergy to show its effectiveness in the proposed method. The introduction of the relation between proteins (PPI networks) and drug-protein interaction significantly improves the prediction of synergistic drug combinations.

Availability And Implementation: The source code and data are available at https://github.com/fatemeh-rafiei/DeepTraSynergy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397534PMC
http://dx.doi.org/10.1093/bioinformatics/btad438DOI Listing

Publication Analysis

Top Keywords

drug combination
20
combination synergy
16
drug combinations
12
drug
8
approach drug
8
proposed approach
8
including drug-target
8
drug-target interaction
8
learn better
8
loss functions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!