Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS); severe symptoms lead MS patients to use complementary treatments. Ketogenic diet (KD) shows wide neuroprotective effects, but the precise mechanisms underlying the therapeutic activity of KD in MS are unclear. The present study established a continuous 24 days experimental autoimmune encephalomyelitis (EAE) mouse model with or without KD. The changes in motor function, pathological hallmarks of EAE, the status of microglia, neuroinflammatory response and intracellular signaling pathways in mice were detected by the rotarod test, histological analysis, real-time PCR (RT-PCR) and western blotting. Our results showed that KD could prevent motor deficiency, reduce clinical scores, inhibit demyelination, improve pathological lesions and suppress microglial activation in the spinal cord of EAE mice. Meanwhile, KD shifted microglial polarization toward the protective M2 phenotype and modified the inflammatory milieu by downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, as well as upregulating the release of anti-inflammatory cytokines such as TGF-β. Furthermore, KD decreased the expression levels of CCL2, CCR2, CCL3, CCR1, CCR5, CXCL10 and CXCR3 in the spinal cord and spleen with reduced monocyte/macrophage infiltration in the CNS. In addition, KD inhibits NLRP3 activation in the microglia, as revealed by the significantly decreased co-expression of NLRP3 and Iba-1 in the KD + EAE group. Further studies demonstrated that KD suppresses inflammatory response and M1 microglial polarization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway, the JAK1/STAT1 pathway, HDAC3 and P2X7R activation, as well as up-regulation of JAK3/STAT6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3fo00122a | DOI Listing |
Heliyon
January 2025
McMaster University, Department of Pediatrics, Hamilton, ON, Canada.
Background: The ketogenic diet is a dietary therapy with anti-seizure effects. The efficacy of the diet is variable, with initial animal studies suggesting the intestinal microbiome may have a modulating effect. Initial research on the role of the human microbiome in pediatric epilepsy management has been inconclusive.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).
View Article and Find Full Text PDFNutrients
January 2025
Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.
Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.
View Article and Find Full Text PDFNutrients
January 2025
Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India.
Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders among reproductive-aged women. It is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Lifestyle changes are suggested as first-line interventions in managing PCOS.
View Article and Find Full Text PDFLife (Basel)
January 2025
Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City 14269, Mexico.
Background: The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease.
Objective: This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!