Arginase has shown promising potential in treating cancers by arginine deprivation therapy; however, low enzymatic activity and stability of arginase are impeding its development. This study was aimed to improve the enzymological properties of a marine bacterial arginase by carboxymethyl chitosan (CMCS) conjugation. An arginase producing marine bacterium Priestia megaterium strain P6 was isolated and identified. The novel arginase PMA from the strain was heterologously expressed, purified, and then conjugated to CMCS by ionic gelation with calcium chloride as the crosslinking agent. Enzymological properties of both PMA and CMCS-PMA conjugate were determined. The optimum temperature for PMA and CMCS-PMA at pH 7 were 60 °C and 55 °C, respectively. The optimum pH for PMA and CMCS-PMA at 37 °C were pH 10 and 9, respectively. CMCS-PMA showed higher thermostability than PMA over 55-70 °C and higher pH stability over pH 4-11 with the highest pH stability at pH 7. At 37 °C and pH of 7, i.e., around the human blood temperature and pH, CMCS-PMA was higher than the free PMA in enzymatic activity and stability by 24% and 21%, respectively. CMCS conjugation not only changed the optimum temperature, optimum pH, and enzymatic activity of PMA, but also improved its pH stability and temperature stability, and thus made it more favorable for medical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-023-03406-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!